首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The molecular weight distribution (MWD) curves for polymerization systems with chain transfer to polymer leading to reshuffling of polymer segments (and broadening of the MWD), but not changing chain functionalities, were simulated by the Monte Carlo method. The bimodality observed in some distributions was explained by different distribution functions of chains which did not undergo reshuffling and of those which underwent the chain transfer reaction. Using this observation, a numerical integration method for computing DP w/DP n (and the MWD curves) in the systems under consideration was devised. Plots relating DP w/DP n to monomer conversion and ktr/kp are presented and a method of determination of ktr/kp from the DP w/DP n data is proposed.  相似文献   

3.
A new theoretical consideration of chain transfer to monomer in the anionic polymerization of hydrocarbon monomers is presented. It is shown that the kinetic scheme used in theoretical studies reported previously contradicts the widespread views on the chemical mechanism of carbanionic reactions. It is suggested that the most probable path of the transfer reaction is the proton abstraction from the side group of the monomer; the terminal double bond of the monomer molecule remains unchanged, and therefore the intermediate species can participate in succeeding reactions as a macromonomer. The molecular characteristics of polymer formed in processes with monomer transfer by side-group substitution are determined. At high conversion, the polymer formed in such a process is shown to possess a number-average degree of polymerization, n, approaching the theoretical value for living polymers, and a w exceeding it the more the higher the intensity of transfer. Furthermore, it shows a broad molecular weight distribution and a fairly noticeable degree of branching. These results considerably differ from those previously reported.  相似文献   

4.
In this part of the series, the influence of polyfunctional chain transfer agents with transfer constant C ≤ 1 on the molecular weight distribution was studied. The analytical expressions for the number- and weight-average degree of polymerization, and dispersion index were derived by kinetic and statistical methods. The expression for the molecular weight distribution can only be obtained by statistical methods. Some numerical examples on the dependence of distribution parameters as a function of the functionality of transfer agents f and transfer constants are illustrated. A critical value of the chain transfer constant was found to exist, which permits the synthesis of linear (for f = 2) or branched polymers (f > 2) with DP w/DP n approximately equal to 2 during the entire course of the polymerization.  相似文献   

5.
Poly(butyl acrylate) (PBuA) of high molecular weight was synthesized by atom transfer radical polymerization (ATRP) in ethyl acetate. Whereas for low molecular weight polymers, a linear increase of the number‐average molecular weight, Mn, versus conversion and narrow molecular weight distributions indicate the suppression of side reactions, a downward curvature in the plot of Mn versus conversion was observed for high molecular weights (Mn > 50 000). This effect is explained by chain transfer reactions, leading to branched polymers. GPC measurements with a viscosity detector give evidence for the branched structure of high molecular weight polymers obtained in ATRP. In addition, transfer to solvent or monomer is likely to occur.  相似文献   

6.
Well‐defined macromolecular brushes with poly(N‐isopropyl acrylamide) (PNIPAM) side chains on random copolymer backbones were synthesized by “grafting from” approach based on click chemistry and reversible addition‐fragmentation chain transfer (RAFT) polymerization. To prepare macromolecular brushes, two linear random copolymers of 2‐(trimethylsilyloxy)ethyl methacrylate (HEMA‐TMS) and methyl methacrylate (MMA) (poly(MMA‐co‐HEMA‐TMS)) were synthesized by atom transfer radical polymerization and were subsequently derivated to azide‐containing polymers. Novel alkyne‐terminated RAFT chain transfer agent (CTA) was grafted to polymer backbones by copper‐catalyzed 1,3‐dipolar cycloaddition (azide‐alkyne click chemistry), and macro‐RAFT CTAs were obtained. PNIPAM side chains were prepared by RAFT polymerization. The macromolecular brushes have well‐defined structures, controlled molecular weights, and molecular weight distributions (Mw/Mn ≦ 1.23). The RAFT polymerization of NIPAM exhibited pseudo‐first‐order kinetics and a linear molecular weight dependence on monomer conversion, and no detectable termination was observed in the polymerization. The macromolecular brushes can self‐assemble into micelles in aqueous solution. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 443–453, 2010  相似文献   

7.
The accelerated single electron transfer–degenerative chain transfer mediated living radical polymerization (SET–DTLRP) of vinyl chloride (VC) in H2O/tetrahydrofuran (THF) at 25 °C is reported. This process is catalyzed by sodium dithionite (Na2S2O4)‐sodium bicarbonate (NaHCO3). Electron transfer cocatalysts (ETC) 1,1′‐dialkyl‐4,4′‐bipyridinum dihalides or alkyl viologens were also employed in this polymerization. The resulting poly(vinyl chloride) (PVC) has a number‐average molecular weight (Mn) = 2,000–12,000, no detectable amounts of structural defects, and both active chloroiodomethyl and inactive chloromethyl chain ends. The molecular weight distribution of PVC obtained is Mw/Mn = 1.5. The surface active agents afford the final polymers as a powder and provide an acceleration of the rate of polymerization. The role of ETC is to accelerate the single electron transfer (SET) step, whereas THF enhances the degenerative chain transfer (DT) step. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6364–6374, 2004  相似文献   

8.
Truly living polymerization of isobutylene (IB) has been achieved for the first time by the use of new initiating systems comprising organic acetate-BCl3 complexes under conventional laboratory conditions in various solvents from ?10 to ?50°C. The overall rates of polymerization are very high, which necessitated the development of the incremental monomer addition (IMA) technique to demonstrate living systems. The living nature of the polymerizations was demonstrated by linear M n versus grams polyisobutylene (PIB) formed plots starting at the origin and horizontal number of polymer molecules formed versus amount of polymer formed plots. DP n obeys [IB]/[CH3COORt · BCl3]. Molecular weight distributions (MWD) are very narrow in homogeneous systems (M w/M n = 1.2–1.3) whereas somewhat broader values are obtained when the polymer precipitates out of solution (M w/M n = 1.4–3.0). The MWDs tend to narrow with increasing molecular weights, i.e., with the accumulation of precipitated polymer in the reactor. Traces of moisture do not affect the outcome of living polymerizations. In the presence of monomer both first and second order chain transfer to monomer are avoided even at ?10°C. The diagnosis of first and second order chain transfer has been accomplished, and the first order process seems to dominate. Forced termination can be effected either by thermally decomposing the propagating complexes or by nucleophiles. In either case the end groups will be tertiary chlorides. The living polymerization of isobutylene initiated by ester. BCl3 complexes most likely proceeds by a two-component group transfer polymerization.  相似文献   

9.
The molecular weight distribution (MWD) of crystallizable polyphenylacetylene prepared near room temperature in the presence of ferric acetylacetonate and triethylaluminum was determined through use of fractions characterized by vapor pressure osmometry and gel permeation chromatography (GPC). The number- and weight-average molecular weights (M n and M w) are both less than the molecular weight corresponding to the maximum of the weight distribution function, which lacks a high molecular weight tail. M wandM n is less than is consistent with models allowing for chain termination characteristic of vinyl polymers. GPC elution volumes are much less than those characteristic of polystyrene of similar molecular weight, and the Mark-Houwink exponent is high (2.4 for M v 4800 to 6800). These data indicate more rodlike behavior than for polystyrene of equivalent molecular weight. The MWD and other data suggest intramolecular chain termination, possibly associated with the molecule's tendency to form paramagnetic defect states.  相似文献   

10.
β-Nitrostyrene and many of its derivatives have been shown to yield high polymers via anionic initiation with alkoxide ions in protic solvents, e.g., alcohols. A study was conducted to determine the effect of certain substituents on the polymerization characteristics of representative monomers of this series and the properties of their polymers. A kinetic study was conducted and the relative rates of propagation were unexpectedly found to correlate well with brown's σ+ values. The rates of initiation of two representative monomers, β-nitrostyrene and p-methoxy-β-nitrostyrene, with sodium ethoxide were found to be 3.51 and 2.86 liter/mole sec, respectively. The rate of chain transfer in ethanol was studied qualitatively by using gel-permeation chromatography (GPC) to obtain molecular weight distribution (MWD) curves. The low values of the M w/M n ratios indicated little chain transfer in the protic solvent.  相似文献   

11.
Atom transfer radical polymerization (ATRP) was used for the preparation and subsequent copolymerization of two acryloyl‐terminated poly(n‐butyl acrylate) macromonomers with different degrees of polymerization (DPnBA = 25 and 42). Homopolymerization of the higher molecular weight macromonomer ( MM1 ; PnBA42‐A, Mn = 5600, DPMM = 42, Mw/Mn = 1.18) resulted in preparation of a densely grafted polymer with a narrow molecular weight distribution (Mw/Mn = 1.14), but with the limited degree of polymerization DP = 12. The ultimate degree of homopolymerization for the lower molecular weight macromonomer ( MM2 ; PnBA25‐A, Mn = 3400, DPMM = 25, Mw/Mn = 1.20) was higher, and DP increased from 12 to 22. The limited DP could be because of progressively increasing steric congestion for macromonomers in approaching the growing chain ends of densely grafted polymers. When MMs were copolymerized with nBA, the reactivity of MM was nearly the same as that of nBA monomer irrespective of the differences in the degree of polymerization of the MMs and the initial molar ratio of nBA to MM. Well‐defined graft polymers with different lengths of backbone and side chains, and different graft density were successfully prepared by “grafting through” ATRP. Tadpole‐shaped and dumbbell‐shaped graft polymers were also synthesized by ATRP. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5454–5467, 2006  相似文献   

12.
A fast living radical polymerization of methyl methacrylate (MMA) proceeded with the (MMA)2? Cl/Ru(Ind)Cl(PPh3)2 initiating system in the presence of n‐Bu2NH as an additive [where (MMA)2? Cl is dimethyl 2‐chloro‐2,4,4‐trimethyl glutarate]. The polymerization reached 94% conversion in 5 h to give polymers with controlled number‐average molecular weights (Mn's) in direct proportion to the monomer conversion and narrow molecular weight distributions [MWDs; weight‐average molecular weight/number‐average molecular weight (Mw/Mn) ≤ 1.2]. A poly(methyl methacrylate) with a high molecular weight (Mn ~ 105) and narrow MWD (Mw/Mn ≤ 1.2) was obtained with the system within 10 h. A similarly fast but slightly slower living radical polymerization was possible with n‐Bu3N, whereas n‐BuNH2 resulted in a very fast (93% conversion in 2.5 h) and uncontrolled polymerization. These added amines increased the catalytic activity through some interaction such as coordination to the ruthenium center. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 617–623, 2002; DOI 10.1002/pola.10148  相似文献   

13.
This study deals with control of the molecular weight and molecular weight distribution of poly(vinyl acetate) by iodine‐transfer radical polymerization and reversible addition‐fragmentation transfer (RAFT) emulsion polymerizations as the first example. Emulsion polymerization using ethyl iodoacetate as the chain transfer agent more closely approximated the theoretical molecular weights than did the free radical polymerization. Although 1H NMR spectra indicated that the peaks of α‐ and ω‐terminal groups were observed, the molecular weight distributions show a relatively broad range (Mw/Mn = 2.2–4.0). On the other hand, RAFT polymerizations revealed that the dithiocarbamate 7 is an excellent candidate to control the polymer molecular weight (Mn = 9.1 × 103, Mw/Mn = 1.48), more so than xanthate 1 (Mn = 10.0 × 103, Mw/Mn = 1.89) under same condition, with accompanied stable emulsions produced. In the Mn versus conversion plot, Mn increased linearly as a function of conversion. We also performed seed‐emulsion polymerization using poly(nonamethylene L ‐tartrate) as the chiral polyester seed to fabricate emulsions with core‐shell structures. The control of polymer molecular weight and emulsion stability, as well as stereoregularity, is also discussed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

14.
Aromatic poly(amic acids) derived from pyromellitic dianhydride and 4,4′,-diaminodiphenyl ether were characterized by dilute solution techniques. Number-average molecular weights M?n of 13 samples ranged from 13,000 to 55,000 (DP 31–131). Weight-average molecular weights M?w of 21 samples ranged from 9,900 to 266,000. The ratio M?w/M?n was between 2.2 and 4.8. Heterogeneous polymerization yielded higher molecular weight polymer than homogeneous polymerization. The molecular weight could be varied systematically by control of stoichiometric imbalance. Use of very pure monomers and solvent gave polymers of relatively high number-average molecular weight (~50, 000) and the most probable molecular weight distribution M?w/M?n = 2. Impure monomers and/or solvent resulted in lower number-average molecular weight (M?n ? 20,000–30,000) and wider distributions (M?w/M?n = 3–5). The Mark-Houwink relation obtained was [η] = 1.85 × 10?4M?w0.80 The exponent is characteristic of moderately extended solvated coils. The unperturbed chain dimensions (r02 /M)1/2 were 0.848 A., and the steric factor σ was 1.24 which is close to the limiting value of unity for an equivalent chain with free internal rotations. The sedimentation constant–molecular weight relation was S0 = 2.70 × 10?2M?w0.39. This exponent is consistent with the Mark-Houwink exponent.  相似文献   

15.
Isobutyl propenyl ether [IBPE; CH3CH=CH? OCH2CH(CH3)2] was polymerized with a mixture of hydrogen iodide and iodine (HI/I2 initiator) in n-hexane at ?40°C to yield living polymers with a nearly monodisperse molecular weight distribution (MWD) (M?w/M?n ≈ 1.1). The number-average molecular weight (M?n) of the polymers increased proportionally to IBPE conversion and further increased when a new monomer feed was added to a completely polymerized solution. The M?n was controlled by the initial concentration of hydrogen iodide if the acid was charged in excess over iodine. In polymerization by iodine alone the M?n of the polymers obtained in nonpolar solvents (n-hexane and toluene) also increased with conversion, but their MWD was broader (M?w/M?n = 1.3–1.4) than in the HI/I2-initiated systems under similar conditions. The iodine-initiated polymerization in polar CH2Cl2 solvent, in contrast, led to nonliving polymers with a broad MWD (M?n/M?n = 1.6–1.8) and M?n, independent of conversion. The living polymerization of IBPE was also compared with that of the corresponding isobutyl vinyl ether, to determine the effect of the β-methyl group in IBPE.  相似文献   

16.
Polycondensation normally proceeds in a step-growth reaction manner to give polymers with a wide range of molecular weights. However, the polycondensation of potassium 2-alkyl-5-cyano-4-fluorophenolate ( 1 ) proceeded at 150°C in a chain polymerization manner from initiator, 4-fluoro-4′-trifluoromethyl benzophenone ( 2 ), to give aromatic polyethers having controlled molecular weights and low polydispersities (Mw/Mn ⩽ 1.2). The resulting polycondensation of 1 had all of the characteristics of living polymerization and displayed a linear correlation between molecular weight and monomer conversion, maintaining low polydispersities. Sulfolane was a better solvent for chain-growth polycondensation of 1 than other aprotic solvents. The polyether from 1 with a low polydispersity showed higher crystallinity than that with a broad molecular weight distribution, obtained by the conventional polycondensation of 1 without 2 .  相似文献   

17.
Cationic polymerization of isobutyl vinyl ether (IBVE) with acetic acid (CH3COOH)/tin tetrahalide (SnX4: X = Cl, Br, I) initiating systems in toluene solvent at 0°C was investigated, and the reaction conditions for living polymerization of IBVE with the new initiating systems were established. Among these tin tetrahalides, SnBr4 was found to be the most suitable Lewis acid to obtain living poly(IBVE) with a narrow molecular weight distribution (MWD). The polymerization with the CH3COOH/SnBr4 system, however, was accompanied with the formation of a small amount of another polymer fraction of very broad MWD, probably due to the occurrence of an uncontrolled initiation by SnBr4 coupled with protonic impurity. Addition of 1,4-dioxane (1–1.25 vol %) or 2,6-di-tert-butylpyridine (0.1–0.6mM) to the polymerization mixture completely eliminated the uncontrolled polymer to give only the living polymer with very narrow MWD (M w/M n ≤ 1.1; M w, weight-average molecular weight; M n, number-average molecular weight). The M n of the polymers increased in direct proportion to monomer conversion, continued to increase upon sequential addition of a fresh monomer feed, and was in good agreement with the calculated values assuming that one CH3COOH molecule formed one polymer chain. Along with these results, kinetic study and direct 1H-NMR observation of the living polymerization indicated that CH3COOH and SnBr4 act as so-called “initiator” and “activator”, respectively, and the living polymerization proceeds via an activation of the acetate dormant species. The basic additives such as 1,4-dioxane and 2,6-di-tert-butylpyridine would serve mainly as a “suppressor” of the uncontrolled initiation by SnBr4. The polymers produced after quenching the living polymerization with methanol possessed the acetate dormant terminal and they induced living polymerization of IBVE in conjunction with SnBr4 in the presence of 1,4-dioxane. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 3173–3185, 1998  相似文献   

18.
The cationic polymerization of cis- and trans-ethyl propenyl ethers (EPE, CH3? CH?CH? O? C2H5), initiated by a mixture of hydrogen iodide and iodine (HI/I2 initiator) at ?40°C in nonpolar media (toluene and n-hexane), led to living polymers of controlled molecular weights and a narrow molecular weight distribution (MWD) (M?w/M?n = 1.2–1.3). The geometrical isomerism of the monomer did not affect the living character of the polymerization. 13C NMR stereochemical analysis of the polymers showed that the living propagating end is sterically less crowded than nonliving counterparts generated by conventional Lewis acids (e.g., BF3OEt2). New block copolymers between EPE (cis or trans) and isobutyl vinyl ether were also prepared by sequential living polymerization of the two monomers.  相似文献   

19.
LI  Yongjun  ZHANG  Sen  FENG  Chun  ZHANG  Yaqin  LI  Qingnuan  LI  Wenxin  HUANG  Xiaoyu 《中国化学》2009,27(11):2261-2266
Amphiphilic block copolymers containing hydrophobic perfluorocyclobutyl‐based (PFCB) polyacrylate and hydrophilic poly(ethylene glycol) (PEG) segments were prepared via reversible addition‐fragmentation chain transfer (RAFT) polymerization. The PFCB‐containing acrylate monomer, p‐(2‐(p‐tolyloxy)perfluorocyclobutoxy)‐phenyl acrylate, was first synthesized from commercially available compounds in good yields, and this kind of acrylate monomer can be homopolymerized by free radical polymerization or RAFT polymerization. Kinetic study showed the 2,2′‐azobis(isobutyronitrile) (AIBN) initiated and cumyl dithiobenzoate (CDB) mediated RAFT polymerization was in a living fashion, as suggested by the fact that the number‐average molecular weights (Mn) increased linearly with the conversions of the monomer, while the polydispersity indices kept less than 1.10. The block polymers with narrow molecular weight distributions (Mw/Mn≦1.21) were prepared through RAFT polymerization using PEG monomethyl ether capped with 4‐cyanopentanoic acid dithiobenzoate end group as the macro chain transfer agent (mPEG‐CTA). The length of the hydrophobic segment can be tuned by the feed ratio of the PFCB‐based acrylate monomer and the extending of the polymerization time. The micellization behavior of the block copolymers in aqueous media was investigated by the fluorescence probe technique.  相似文献   

20.
We employed alcohols as initiators for living cationic polymerization of vinyl ethers and p‐methoxystyrene, coupled with tolerant Lewis acid, borontrifluoride etherate (BF3OEt2), although they were known to be poisonous reagent to bring about chain‐breaking such as chain transfer/termination rather than such beneficial one for propagation and polymerization‐control. As well known, without assistance of additive, ill‐defined polymers with broad molecular weight distributions (MWDs) were produced. Even addition of conventional oxygen‐based bases, for example, ethyl acetate (AcOEt), 1,4‐dioxane (DO), tetrahydrofran (THF), and diethyl ether (Et2O) was less efficient in this system to control molecular weights and MWDs (Mw/Mn > 2.0). In contrast, by addition of dimethyl sulfide (Me2S), MWDs of the resultant polymers became much narrower (Mw/Mn < 1.23) and the number‐average molecular weight (Mn) increased in direct proportion to monomer conversion in agreement with the calculated values assuming that one alcohol molecule generates one polymer chain. Studying changed feed‐ratio of alcohol to monomer and structural analyses with NMR and MALDI‐TOF‐MS indicated that quantitative initiation from alcohol giving alkoxide counteranion. This system opens a new way to use a variety of alcohols as initiators, which would allow us to design variety of structures and functions of counteranion. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4194–4201, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号