首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analytical model is developed to investigate the sound transmission loss from orthogonally rib-stiffened double laminated composite plates structure under a plane sound wave excitation, in which first order shear deformation theory is presented for laminated composite plates. By using the space harmonic approach and virtual work principle, the sound transmission loss is described analytically. The validity and feasibility of the model are verified by comparing the present theoretical predictions with numerical results published previously. The influences of structure geometrical parameters on sound transmission loss are subsequently presented. Through numerical results, it can be concluded that the proposed analytical model is accurate and simple in solving the vibroacoustic behavior of an orthogonally rib-stiffened double laminated composite plates.  相似文献   

2.
This paper deals with vibro-acoustic optimization of laminated composite plates. The vibration of the laminated plate is excited by time-harmonic external mechanical loading with prescribed frequency and amplitude, and the design objective is to minimize the total sound power radiated from the surface of the laminated plate to the surrounding acoustic medium. Instead of solving the Helmholtz equation for evaluation of the sound power, advantage is taken of the fact that the surface of the laminated plate is flat, which implies that Rayleigh’s integral approximation can be used to evaluate the sound power radiated from the surface of the plate. The novel Discrete Material Optimization (DMO) formulation has been applied to achieve the design optimization of fiber angles, stacking sequence and selection of material for laminated composite plates. Several numerical examples are presented in order to illustrate this approach.  相似文献   

3.
Analytical studies on the vibration and sound radiation characteristics of an asymmetric laminated rectangular plate are carried out in this paper. Theoretical formulations, in which the effects of thermal environments are taken into account, are derived for the vibration and sound radiation based on both first-order shear deformation plate theory and Rayleigh integral. It is found that the natural frequencies, the resonant amplitudes of vibration response and the sound pressure level decrease with the temperature rising. The natural frequencies of asymmetric plates are smaller than those of symmetric plates and the velocity responses of asymmetric plates are larger than those of symmetric plates.  相似文献   

4.
Composite structures are often used in the aerospace industry due to the advantages offered by a high strength to weight ratio. Sound transmission through an infinite laminated composite cylindrical shell is studied in the context of the transmission of airborne sound into the aircraft interior. The shell is immersed in an external fluid medium and contains internal fluid. Airflow in the external fluid medium moves with a constant velocity. An exact solution is obtained by simultaneously solving the first-order shear deformation theory (FSDT) of a laminated composite shell and the acoustic wave equations. Transmission losses (TL) obtained from numerical solutions are compared with those of other authors. The effects of structural properties and flight conditions on TL are studied for a range of values, especially, the Mach number, stack sequences, and the angle of warp. Additionally, comparisons of the transmission losses are made between the classical thin shell theory (CST) and FSDT for laminated composite and isotropic cylindrical shells.  相似文献   

5.
Anisotropic strength of composites   总被引:1,自引:0,他引:1  
The present investigation is concerned with the development of a theory of strength of anisotropic composite materials and the establishment of sound experimental procedures for the confirmation of the predicted results. A general theory is stated whereby the strength of laminated as well as unidirectional composite materials subjected to any state of combined stress can be predicted once the basic strength characteristics of a unidirectional layer have been determined. The transversely isotropic layer is treated in detail and, based on the understanding of the mechanical behavior of laminated composites, the procedure outlined for determining the strength of laminated systems. An experimental program was conducted, using glass-filament-reinforced resin test spceimens, and data obtained confirmed the results predicted for the strength of unidirectional composites. Based on the results of the analysis presented, composites may then be designed to incorporate an optimum utilization of the inherent strength characteristics of the constitutent materials.  相似文献   

6.
Composite structures are often used in aircraft because of advantages offered by a high strength to weight ratio. Sound transmission through an infinite laminated composite cylindrical shell is studied in the context of the transmission of airborne sound into aircraft interior. The shell is immersed in an external fluid medium and contains an internal fluid, and airflow in an external fluid medium moves with a constant velocity. The different parameters were used to see how laminate specification affected noise transmission. An exact solution is obtained by solving the vibration equation of laminated composite shell and acoustic wave equations simultaneously. Transmission losses (TLs) obtained from numerical solution are compared with those of other authors. The effects of different source condition, structural properties and flight conditions on TL are studied for a range of values, especially, incident angle of the plane wave, Mach number and flight altitude of aircraft, stack sequences, angle of warp and damping.  相似文献   

7.
徐博侯  王大钧 《力学学报》1990,22(5):625-629
本文给出一种层合板的模型,可以用来同时计算声波在层合板上的反射与透射,并且是严格满足层间位移和横向剪应力连续条件,然后给出一系列数值例子,与相应的准确解比较。以及说明在不同情况下声反射和透射的一些特点。  相似文献   

8.
Whether the first-order and Reddy third-order shear deformation shell theories are able to evaluate the vibroacoustic responses of laminated cylindrical shells with normal deformation in the high frequency range or not is examined by comparison with a 3D higher-order shear deformation shell theory. The implicit governing equations of arbitrary angle-ply laminated cylindrical shells are derived from the 3D higher-order and Reddy third-order shell theories, and solved on the basis of the Fourier transform. The Reddy third-order shell theory can be obtained as a special case from the 3D higher-order shell theory. The first-order and Reddy third-order shell theories almost give rise to the same vibrational and acoustic results. These two simple shear deformation shell theories can be used to study far-field acoustic radiation from laminated cylindrical shells from the low to high frequency range, but they show some differences from the 3D higher-order shell theory in high frequency vibration of shells. Nevertheless, the differences of vibrational responses seem not to be distinct. The helical wave spectra of the higher-order radial displacements are nearly separate from those of the low-order radial displacement and play a minor role in far-field acoustic radiation, which makes the two simple shell theories applicable in prediction of acoustic power of the cylindrical shells in the much higher frequency range. Moreover, it also results in the fact that far-field sound is least sensitive in comparison with near-field sound and vibration of shells.  相似文献   

9.
10.
The present investigation is concerned with the development of a theoretical basis for determining the elastic moduli of laminated anisotropic materials within the framework of the theory of plates and shells, and the establishment of sound experimental procedures for the confirmation of the predicted results. A general theory is formulated whereby the properties of a laminated anisotropic composite can be predicted once the material properties, the thickness and the orientation of each unit ply are known. Treated in detail are the cross-ply and angle-ply laminates, these configurations being of increasing importance to designers and analysts of filament-wound materials. Laminated materials of this type may, depending on lamination parameters, exhibit coupling between in-plane strain and bending or twisting curvature which must be considered in the analysis and testing of such materials. Based on an understanding of the predicted mechanical behavior, an experimental program is designed, using glass-filament-reinforced resin cross-ply and angle-ply plates and cylindrical pressure vessels as test specimens, which confirms the validity of the theory and presents experimental data heretofore not available.  相似文献   

11.
This work develops a series of Green’s functions for multi-phase Kirchhoff isotropic laminated plates. First, we derive the Green’s functions for a composite laminated plate composed of two bonded dissimilar isotropic laminated semi-infinite plates. Second, the obtained results for bimaterials are judiciously applied to obtain the Green’s function solution for a circular elastic inclusion embedded in an infinite isotropic laminated plate. Third, Green’s functions for a composite space composed of an arbitrary number of wedges of different isotropic laminated plates are derived. Finally, we derive Green’s functions for a laminated plate with an elliptical and a parabolic boundary, respectively.  相似文献   

12.
Influences of large deformation (geometrical non-linear) and rotary inertia on wave propagation in a long, piezoelectric cylindrically laminated shell in thermal environment is presented in this paper. Nonlinear dynamic governing equations of piezoelectric cylindrically laminated shells are derived by means of Hamilton’s principle. The wave propagation modes are obtained by solving an eigenvalue problem. Numerical examples show that the characteristics of wave propagation in piezoelectric cylindrically laminated shells are relates to the large deformation, rotary inertia and thermal environment of the piezoelectric cylindrically laminated shells. The effect of large deformation, rotary inertia and thermal load on wave propagation in the piezoelectric cylindrically laminated shells is discussed by comparing with the result from the small deformation (geometrical linear shell theory). This method may be used to investigate wave propagation in various laminated material, layers numbers and thickness of piezoelectric cylindrically laminated shells under large deformation. The results carried out can be used in the ultrasonic inspection techniques and structural health monitoring.  相似文献   

13.
A six-variable geometrical nonlinear shear deformation laminated theory is presented by which normal stress and strain distribution can be calculated. By considering some affective factors that were neglected under the finite deformation condition, an improved von Karman geometrical nonlinear deformation-strain relation is used for large deformation analysis. After analyzing the bending problem of laminated plates, and comparing it with 3-D elasticity solutions and J. N. Reddy five-variable simple higher-order shear deformation laminated theory, we can conclude that a satisfactory calculation precision has been achieved, which shows that it is especially suitable for the calculation in the condition of large deformation and the laminated thick plate analysis.  相似文献   

14.
层合板六参量几何非线性高阶剪切理论   总被引:1,自引:1,他引:0  
提出了层合板六参量的高阶剪切变形理论的位移场假定,以考虑在大变形条件下层合板法向变形和厚度的变化.同时对von Karman应变位移简化假设进行了补充修改,考虑某些有限变形条件下被忽略小量的影响,建立了对应于该文六参量模型和更加适合大变形分析的层合板几何非线性关系,平衡方程和边界条件.利用该文模型分析了橡胶复合材料简支板的大变形弯曲行为,并对比Reddy五参量几何非线性简单高阶剪切变形层合理论解和弹性解析解,证明该文模型更适合大变形和层合厚板分析.  相似文献   

15.
基于应变能等效原理、高阶剪切变形理论和Hamilton变分原理,考虑复合材料铺设层内的损伤效应,建立了具损伤压电智能层合板的运动控制方程,并运用Galerkin方法进行求解.数值算例中,讨论了损伤效应、厚跨比及压电层厚度与层合板总厚度之比对四边简支压电智能层合板自由振动频率的影响和外部控制电压对其动力响应的影响.  相似文献   

16.
This paper deals with the large amplitude vibration, non-linear bending and postbuckling of fiber reinforced composite laminated plates resting on an elastic foundation in hygrothermal environments. Two kinds of fiber reinforced laminated plates, namely, uniformly distributed and functionally graded reinforcements, are considered. The material properties of fiber reinforced laminated plates are estimated through a micromechanical model and are assumed to be temperature-dependent and moisture-dependent. The motion equations are based on a higher order shear deformation plate theory that includes plate-foundation interaction and the hygrothermal effect. A two-step perturbation technique is employed to determine the non-linear to linear frequency ratios of plate vibration, the load-deflection and load-bending moment curves of plate bending, and postbuckling equilibrium paths of laminated plates.  相似文献   

17.
基于精化高阶理论,建立了层合板有限元模型,编制了相应的MATLAB程序。分析了三层四边简支层合板在力荷载作用下的响应,与解析解吻合良好。分析了热-力共同作用下层合板的响应,与基于ABAQUS软件建立的精细有限元模型计算结果相对比,验证了模型的高效性。研究了跨厚比和铺设方式对层合板层间应力的影响,结果表明:跨厚比对层间应力影响显著,两者之间大致呈反比例函数关系;对称铺设方式可以有效降低层合板中的层间应力。  相似文献   

18.
研究复合材料加肋层合板结构受冲击载荷作用下的瞬态波传播.加肋层合板模型被处理成层合板的弯曲运动与层合梁的扭转与弯曲运动的耦合连续模型.通过Laplace变换,并采用回传射线矩阵法(MRRM),基于一阶剪切变形层合板理论,确定复合材料加肋层合板结构中传播的各条射线群.采用FFT变换,计算各种冲击载荷作用下加肋层合板结构的短时瞬态响应,并分析讨论脉冲类型对加肋层合板结构短时瞬态响应的影响.  相似文献   

19.
The creep buckling and post-buckling of the laminated piezoelectric viscoelastic functionally graded material (FGM) plates are studied in this research. Considering the transverse shear deformation and geometric nonlinearity, the Von Karman geometric relation of the laminated piezoelectric viscoelastic FGM plates with initial deflection is established. And then nonlinear creep governing equations of the laminated piezoelectric viscoelastic FGM plates subjected to an in-plane compressive load are derived on the basis of the elastic piezoelectric theory and Boltzmann superposition principle. Applying the finite difference method and the Newmark scheme, the whole problem is solved by the iterative method. In numerical examples, the effects of geometric nonlinearity, transverse shear deformation, the applied electric load, the volume fraction and the geometric parameters on the creep buckling and post-buckling of laminated piezoelectric viscoelastic FGM plates with initial deflection are investigated.  相似文献   

20.
剪切流作用下层合梁非线性振动特性研究   总被引:1,自引:1,他引:0  
刘昊  瞿叶高  孟光 《力学学报》2022,54(6):1669-1679
针对剪切流中层合梁的大变形非线性振动问题, 采用高阶剪切变形锯齿理论和冯·卡门应变描述层合梁的变形模式和几何非线性效应, 构建了大变形层合梁非线性振动有限元数值模型; 采用基于任意拉格朗日?欧拉方法的有限体积法求解不可压缩黏性流体纳维-斯托克斯方程, 结合层合梁和流体的耦合界面条件建立了剪切流作用下层合梁流固耦合非线性动力学数值模型, 采用分区并行强耦合方法对层合梁的流致非线性振动响应进行了迭代计算. 研究了不同速度分布的剪切流作用下单层梁和多层复合材料梁的振动响应特性, 并验证了本文数值建模方法的有效性. 结果表明: 剪切流作用下单层梁的振动特性与均匀流作用下的情况不同, 梁的运动轨迹受剪切流影响向下偏斜, 随着速度分布系数增加, 尾部流场中的涡结构发生改变; 刚度比对剪切流作用下层合梁的振动特性有显著影响, 随着刚度比的增加, 层合梁振动的振幅增大, 主导频率下降, 运动轨迹由‘8’字形逐渐变得不对称; 发现了不同厚度比和铺层角度情况下, 层合梁存在定点稳定模式、周期极限环振动模式和非周期振动模式三种不同的振动模式, 改变层合梁铺层角度可实现层合梁周期极限环振动模式向非周期振动模式转变.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号