首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To comprehensively understand the effects of Kelvin–Helmholtz instabilities on a transitional separation bubble on the suction side of an airfoil regarding as to flapping of the bubble and its impact on the airfoil performance, the temporal and spatial structure of the vortices occurring at the downstream end of the separation bubble is investigated. Since the bubble variation leads to a change of the pressure distribution, the investigation of the instantaneous velocity field is essential to understand the details of the overall airfoil performance. This vortex formation in the reattachment region on the upper surface of an SD7003 airfoil is analyzed in detail at different angles of attack. At a Reynolds number Re c < 100,000 the laminar boundary layer separates at angles of attack >4°. Due to transition processes, turbulent reattachment of the separated shear layer occurs enclosing a locally confined recirculation region. To identify the location of the separation bubble and to describe the dynamics of the reattachment, a time-resolved PIV measurement in a single light-sheet is performed. To elucidate the spatial structure of the flow patterns in the reattachment region in time and space, a stereo scanning PIV set-up is applied. The flow field is recorded in at least ten successive light-sheet planes with two high-speed cameras enclosing a viewing angle of 65° to detect all three velocity components within a light-sheet leading to a time-resolved volumetric measurement due to a high scanning speed. The measurements evidence the development of quasi-periodic vortex structures. The temporal dynamics of the vortex roll-up, initialized by the Kelvin–Helmholtz (KH) instability, is shown as well as the spatial development of the vortex roll-up process. Based on these measurements a model for the evolving vortex structure consisting of the formation of c-shape vortices and their transformation into screwdriver vortices is introduced.  相似文献   

2.
A laminar separation bubble occurs on the suction side of the SD7003 airfoil at an angle of attack α =  4–8° and a low Reynolds number less than 100,000, which brings about a significant adverse aerodynamic effect. The spatial and temporal structure of the laminar separation bubble was studied using the scanning PIV method at α =  4° and Re = 60,000 and 20,000. Of particular interest are the dynamic vortex behavior in transition process and the subsequent vortex evolution in the turbulent boundary layer. The flow was continuously sampled in a stack of parallel illuminated planes from two orthogonal views with a frequency of hundreds Hz, and PIV cross-correlation was performed to obtain the 2D velocity field in each plane. Results of both the single-sliced and the volumetric presentations of the laminar separation bubble reveal vortex shedding in transition near the reattachment region at Re = 60,000. In a relatively long distance vortices characterized by paired wall-normal vorticity packets retain their identities in the reattached turbulent boundary layer, though vortices interact through tearing, stretching and tilting. Compared with the restricted LSB at Re = 60,000, the flow at Re = 20,000 presents an earlier separation and a significantly increased reversed flow region followed by “huge” vortical structures.  相似文献   

3.
The wake dynamics of an airfoil with a blunt and divergent trailing edge is investigated experimentally at relatively high Reynolds. The near wake topology is examined versus different levels of free stream turbulence FST and angles of attack, while the downstream wake evolution is characterized at various levels of FST. The FST is found to have a significant effect on the shapes of turbulence profiles and on the downstream location where the flow reaches its quasi-asymptotic behavior. Streamwise vortices (ribs) corresponding to spanwise variations of turbulence quantities are identified in the near wake region. Simultaneous multi-point hot-wire measurements indicate that their spatial arrangement is similar to Williamson’s (Ann Rev Fluid Mech 29:477–539, 1996) mode B laminar wake flow topology. The results suggest that the statistical spanwise distribution of ribs is independent of FST effects and angle of attack as long as the vortex shedding Strouhal number remains approximately similar.  相似文献   

4.
A transitional separation bubble on the suction side of an SD7003 airfoil is considered. The transition process that forces the separated shear layer to reattach seems to be governed by Kelvin–Helmholtz instabilities. Large scale vortices are formed due to this mechanism at the downstream end of the bubble. These vortices possess a three-dimensional structure and detach from the recirculation region, while other vortices are formed within the bubble. This separation of the vortex is a highly unsteady process, which leads to a bubble flapping. The structure of these vortices and the flapping of the separation bubble due to these vortices are temporally and spatially analyzed at angles of attack from 4° to 8° and chord-length based Reynolds numbers Re c = 20,000–60,000 using time-resolved PIV measurements in a 2D and a 3D set-up, i.e., stereo-scanning PIV measurements are done in the latter case. These measurements complete former studies at a Reynolds number of Re c = 20,000. The results of the time-resolved PIV measurements in a single light-sheet show the influence of the angle of attack and the Reynolds number. The characteristic parameters of the separation bubble are analyzed focusing on the unsteadiness of the separation bubble, e.g., the varying size of the main recirculation region, which characterizes the bubble flapping, and the corresponding Strouhal number are investigated. Furthermore, the impact of the freestream turbulence is investigated by juxtaposing the current and former results. The stereo-scanning PIV measurements at Reynolds numbers up to 60,000 elucidate the three-dimensional character of the vortical structures, which evolve at the downstream end of the separation bubble. It is shown that the same typical structures are formed, e.g., the c-shape vortex and the screwdriver vortex at each Reynolds number and angle of attack investigated and the occurrence of these patterns in relation to Λ-structures is discussed. To evidence the impact of the freestream turbulence, these results are compared with findings of former measurements.  相似文献   

5.
The present paper highlights results derived from the application of a high-fidelity simulation technique to the analysis of low-Reynolds-number transitional flows over moving and flexible canonical configurations motivated by small natural and man-made flyers. This effort addresses three separate fluid dynamic phenomena relevant to small fliers, including: laminar separation and transition over a stationary airfoil, transition effects on the dynamic stall vortex generated by a plunging airfoil, and the effect of flexibility on the flow structure above a membrane airfoil. The specific cases were also selected to permit comparison with available experimental measurements. First, the process of transition on a stationary SD7003 airfoil section over a range of Reynolds numbers and angles of attack is considered. Prior to stall, the flow exhibits a separated shear layer which rolls up into spanwise vortices. These vortices subsequently undergo spanwise instabilities, and ultimately breakdown into fine-scale turbulent structures as the boundary layer reattaches to the airfoil surface. In a time-averaged sense, the flow displays a closed laminar separation bubble which moves upstream and contracts in size with increasing angle of attack for a fixed Reynolds number. For a fixed angle of attack, as the Reynolds number decreases, the laminar separation bubble grows in vertical extent producing a significant increase in drag. For the lowest Reynolds number considered (Re c  = 104), transition does not occur over the airfoil at moderate angles of attack prior to stall. Next, the impact of a prescribed high-frequency small-amplitude plunging motion on the transitional flow over the SD7003 airfoil is investigated. The motion-induced high angle of attack results in unsteady separation in the leading edge and in the formation of dynamic-stall-like vortices which convect downstream close to the airfoil. At the lowest value of Reynolds number (Re c  = 104), transition effects are observed to be minor and the dynamic stall vortex system remains fairly coherent. For Re c  = 4 × 104, the dynamic-stall vortex system is laminar at is inception, however shortly afterwards, it experiences an abrupt breakdown associated with the onset of spanwise instability effects. The computed phased-averaged structures for both values of Reynolds number are found to be in good agreement with the experimental data. Finally, the effect of structural compliance on the unsteady flow past a membrane airfoil is investigated. The membrane deformation results in mean camber and large fluctuations which improve aerodynamic performance. Larger values of lift and a delay in stall are achieved relative to a rigid airfoil configuration. For Re c = 4.85 × 104, it is shown that correct prediction of the transitional process is critical to capturing the proper membrane structural response.  相似文献   

6.
The dynamics of laminar co-rotating vortex pairs without axial flow have been recently thoroughly studied through theoretical, experimental and numerical studies, which revealed different instabilities contributing to the decay of the vortices. In this paper, the objective is to extend the analysis to the case of co-rotating vortices with axial flow at low Reynolds numbers. A high-order incompressible Navier–Stokes flow solver is used. The momentum equations are spatially discretized on a staggered mesh by finite differences and all derivatives are evaluated with 10th order compact finite difference schemes with RK-4 temporal discretization. The initial condition is a linear superposition of two co-rotating circular Batchelor vortices with q = 1. It is found that there is an initial evolution that resembles the evolution that single q = 1 vortices go through. Azimuthal disturbances grow and result in the appearance of large-scale helical sheets of vorticity. With the development of these instability waves, the axial velocity deficit is weakened. The redistribution of both angular and axial momentum between the core and the surroundings drives the vortex core to a more stable configuration, with a higher q value. After these processes, the evolution is somewhat similar to a pair of co-rotating Lamb–Oseen vortices. A three-dimensional instability develops, with a large band of unstable modes, with the most amplified mode corresponding scaling with the vortex initial separation distance. P. J. S. A. Ferreira de Sousa wishes to acknowledge the support of FCT—SFRH/BD/1129/2000 and SFRH/BPD/21778/2005.  相似文献   

7.
High Reynolds number, low Mach number, turbulent shear flow past a rectangular, shallow cavity has been experimentally investigated with the use of dual-camera cinematographic particle image velocimetry (CPIV). The CPIV had a 3 kHz sampling rate, which was sufficient to monitor the time evolution of large-scale vortices as they formed, evolved downstream and impinged on the downstream cavity wall. The time-averaged flow properties (velocity and vorticity fields, streamwise velocity profiles and momentum and vorticity thickness) were in agreement with previous cavity flow studies under similar operating conditions. The time-resolved results show that the separated shear layer quickly rolled-up and formed eddies immediately downstream of the separation point. The vortices convect downstream at approximately half the free-stream speed. Vorticity strength intermittency as the structures approach the downstream edge suggests an increase in the three-dimensionality of the flow. Time-resolved correlations reveal that the in-plane coherence of the vortices decays within 2–3 structure diameters, and quasi-periodic flow features are present with a vortex passage frequency of ~1 kHz. The power spectra of the vertical velocity fluctuations within the shear layer revealed a peak at a non-dimensional frequency corresponding to that predicted using linear, inviscid instability theory.  相似文献   

8.
A transonic backward-facing step flow, at a free stream Mach number of 0.8 and a Reynolds number of 1.86 × 105 with respect to the step height, was investigated experimentally by means of planar and stereo Particle Image Velocimetry (PIV) measurements for multiple fields of view. The primary aim of this analysis is to examine whether the large temporal variations of the reattachment location is associated with the presence of large scale coherent flow structures. The mean flow reattaches ≈6.1±0.2 times the step height downstream of the step. This value fluctuates temporally as much as ±3 step heights. Measurements of the wake flow in horizontal planes show that the strong variations of the reattachment length are associated with spanwise variations of the streamwise velocity. Two-point correlations revealed large–scale coherent regions with a length of up to 7 step heights and a dominant spanwise wave-length of 1.5…2.5 step heights. Furthermore, close to the step large structures are found, which span more than 5 step heights in spanwise direction. The Reynolds stress distribution of the separated region strongly suggests that the initial streamwise momentum is transferred to the vertical component as well as to the spanwise component in comparable portions by the deformation of the initial Kelvin-Helmholtz vortices and the generation of secondary ones. As a result, the separated shear layer is characterized by eddies of various sizes and orientations. The mean flow field only shows the primary separation bubble and a secondary recirculation region. No stationary streamwise vortices could be found for the tested Reynolds number.  相似文献   

9.
3-D evolution of Kármán vortex filaments and vortex filaments in braid regions in the turbulent wake of a 2-D circular cylinder is investigated numerically based on inviscid vortex dynamics by analyzing the response of the initially 2-D spanwise vortex filaments to periodic spanwise disturbance of varying magnitude, wavelength and initial phase angles. Our results reveal a kind of 3-D vortex system in the wake which consists of large scale horseshoe-shaped vortices and small scale γ-shaped vortex filaments as well as vortex loops. The mechanism and the dynamic process about the generation of streamwise vortical structure and the 3-D coherent structure are reported. currently published in the Chinese Edition of Acta Mechanica Sinica, Vol.25, No.3, 1993 The project supported by National Natural Science Foundation of China and the National Basic Research Project “Nonlinear Science”  相似文献   

10.
A high Reynolds number flat plate turbulent boundary layer is investigated in a wind-tunnel experiment. The flow is subjected to an adverse pressure gradient which is strong enough to generate a weak separation bubble. This experimental study attempts to shed some new light on separation control by means of streamwise vortices with emphasize on the change in the boundary layer turbulence structure. In the present case, counter-rotating and initially non-equidistant streamwise vortices become and remain equidistant and confined within the boundary layer, contradictory to the prediction by inviscid theory. The viscous diffusion cause the vortices to grow, the swirling velocity component to decrease and the boundary layer to develop towards a two-dimensional state. At the position of the eliminated separation bubble the following changes in the turbulence structure were observed. The anisotropy state in the near-wall region is unchanged, which indicates that it is determined by the presence of the wall rather than the large scale vortices. However, the turbulence in the outer part of the boundary layer becomes overall more isotropic due to an increased wall-normal mixing and a significantly decreased production of streamwise fluctuations. The turbulent kinetic energy is decreased as a consequence of the latter. Despite the complete change in mean flow, the spatial turbulence structure and the anisotropy state, the process of transfer of turbulent kinetic energy to the spanwise fluctuating component seems to be unchanged. Local regions of anisotropy are strongly connected to maxima in the turbulent production. For example, at spanwise positions in between those of symmetry, the spanwise gradient of the streamwise velocity cause significant production of turbulent fluctuations. Transport of turbulence in the spanwise direction occurs in the same direction as the rotation of the vortices.  相似文献   

11.
An experimental study was conducted in a transonic channel to control by mechanical vortex generator devices the strong interaction between a shock wave and a separated turbulent boundary layer. Control devices—co-rotating and counter-rotating vane-type vortex generators—were implemented upstream of the shock foot region and tested both on a steady shock wave and on a forced shock oscillation configurations. The spanwise spacing of vortex generator devices along the channel appeared to be an important parameter to control the flow separation region. When the distance between each device is decreased, the vortices merging is more efficient to reduce the separation. Their placement upstream of the shock wave is determinant to ensure that vortices have mixed momentum all spanwise long before they reach the separation line, so as to avoid separation cells. Then, vortex generators slightly reduced the amplitude of the forced shock wave oscillation by delaying the upstream displacement of the leading shock.  相似文献   

12.
An experimental and numerical study of the three-dimensional transition of plane wakes and shear layers behind a flat plate is presented. Flow visualization techniques are used to monitor the response of laminar flows at moderate Reynolds numbers (≈100) to perturbations periodically distributed along the span. In this way, the formation and evolution of streamwise vortex tubes and their interaction with the spanwise vortices are analyzed. The flow was studied numerically by means of three-dimensional inviscid vortex dynamics. Assuming periodicity in the spanwise and the streamwise direction, we discretize the vorticity field into two layers of vortex filaments with finite core diameter. Comparison between experiment and visualization indicates that important features of the three-dimensional evolution can be reproduced by inviscid vortex dynamics. Vortex stretching in the strain field of the spanwise rollers appears to be the primary mechanism for the three-dimensional transition in this type of flows.  相似文献   

13.
An experimental study of scalar mixing in a laminar vortex is presented for vortices generated between two gas streams flowing parallel to each other in a rectangular flow channel. An isolated line vortex is initiated on demand by momentarily increasing one stream velocity in relation to the other using an electromagnetically actuated piston. The temporal piston motion profile is tailored to generate vortices of different strengths corresponding to vortex Reynolds numbers, Re≡Γ/2πν=130–210. Evolution of mixing is monitored by laser-induced fluorescence of acetone vapor premixed into one of the gas streams as the vortex structure evolves with increasing downstream distance from its point of origin. Vortex is generated by pulsing either of the gas streams (seeded or unseeded stream). Vortex initiation process affects the abundance of the gas in the vortex core from the pulsed stream. Spatial mixing statistics are obtained by determining scalar concentration probability density functions (pdf) and the mean mixed fluid concentrations obtained from these pdfs. It is found that the interfacial area generation as a result of vortex kinematics and molecular diffusion along this interface are principally responsible for mixing. The mean mixed fluid concentration in the vortex interaction region scales with the product of vortex circulation and the elapsed time of interaction. These results are similar to those found in liquid mixing experiments, but the rate of mixing is significantly higher due to higher diffusivity of gases.  相似文献   

14.
The results of visual investigations and direct numerical simulation of flow past a spanwise rib in a channel in a pulsating external flow at the Reynolds numbers corresponding to transition to turbulence in the separation region downstream of the rib in steady-state flow past the latter are represented. It is shown that the calculated and experimental data are in the adequate accordance. The effect of the forced unsteadiness parameters on the vortex flow structure downstream of the rib is analyzed. Some laws of the formation and evolution of the vortex structure downstream of the rib in a pulsating flow are obtained.  相似文献   

15.
The character of transitional capillary flow is investigated using pressure-drop measurements and instantaneous velocity fields acquired by microscopic PIV in the streamwise–wall-normal plane of a 536 μm capillary over the Reynolds-number range 1,800 ≤ Re ≤ 3,400 in increments of 100. The pressure-drop measurements reveal a deviation from laminar behavior at Re = 1,900 with the differences between the measured and the predicted laminar-flow pressure drop increasing with increasing Re. These observations are consistent with the characteristics of the mean velocity profiles which begin to deviate from the parabolic laminar profile at Re = 1,900, interpreted as the onset of transition, by becoming increasingly flatter and fuller with increasing Re. A fully-turbulent state is attained at Re ≅ 3,400 where the mean velocity profile collapses onto the mean profile of fully-developed turbulent pipe flow from an existing direct numerical simulation at Re = 5,300. Examination of the instantaneous velocity fields acquired by micro-PIV in the range 1,900 ≤ Re < 3,400 reveal that transitional flows at the microscale are composed of a subset of velocity fields illustrating a purely laminar behavior and a subset of fields that capture significant departure from laminar behavior. The fraction of velocity fields displaying non-laminar behavior increases with increasing Re, consistent with past observations of a growing number of intermittent turbulent spots bounded by nominally laminar flow in macroscale pipe flow with increasing Re. Instantaneous velocity fields that are non-laminar in character consistently contain multiple spanwise vortices that appear to streamwise-align to form larger-scale interfaces that incline slightly away from the wall. The characteristics of these “trains” of vortices are reminiscent of the spatial features of hairpin-like vortices and hairpin vortex packets often observed in fully-turbulent wall-bounded flow at both the macro- and micro-scales. Finally, single-point statistics computed from the non-laminar subsets at each transitional Re, including root-mean-square velocities and the Reynolds shear stress, reveal a gradual and smooth maturation of the patches of disordered motion toward a fully-turbulent state with increasing Re.  相似文献   

16.
Dynamics of hairpin vortices generated by a mixing tab in a channel flow   总被引:3,自引:0,他引:3  
To better understand mixing by hairpin vortices, time-series particle image velocimetry (PIV) was applied to the wake of a trapezoidal-shaped passive mixing tab mounted at the bottom of a square turbulent channel (Re h =2,080 based on the tab height). Instantaneous velocity/vorticity fields were obtained in sequences of 10 Hz in the tab wake in the center plane (xy) and in a plane (xz) parallel to the wall. Periodically-shed hairpin vortices were clearly identified and seen to rise as they advected downstream. Experimental evidence shows that the vortex-induced ejection of the near-wall viscous fluid to the immediate upstream is important to the dynamics of hairpin vortices. It can increase the strength of the hairpin vortices in the near tab region and cause generation of secondary hairpin vortices further downstream when the hairpin heads are farther away from the wall. Measurements also reveal the existence of a type of new secondary vortice with the opposite-sign spanwise vorticity. The distribution of vortex loci in the xy plane shows that the hairpin vortices and the reverse vortices are spatially segregated in distinct layers. Turbulence statistics, including mean velocity profiles, Reynolds stresses, and turbulent kinetic energy dissipation rate distributions, were obtained from the PIV data. These statistical quantities clearly reveal imprints of the identified vortex structures and provide insight into mixing effectiveness. Received: 24 February 2000/Accepted: 24 October 2000  相似文献   

17.
Naturally occurring Görtler vortices have been investigated, using laser anemometry, in the laminar concave-surface boundary layers of water channels with 90° bends. Distributions of streamwise and spanwise velocities are presented, supported by flow visualization. Amplification was found to cease at Görtler numbers in the region of 9, followed by increasing distortion and spanwise wandering of the vortices. Development of a vortex system from an imposed disturbance has also been predicted by numerical computations.  相似文献   

18.
19.
 The flow field downstream of a two-dimensional backward-facing step is usually assumed to be independent of the direction along the span of the step. This assumption is made even though it is well known that the flow exhibits a three-dimensional vortex structure. This state of affairs is no doubt due to the lack of detailed information concerning the characteristics of the vortex structure. In this paper, we report our investigations of the flow structure around a reattachment region using an ultrasound velocity profiler to measure the spanwise velocity component as a function of the spanwise coordinate and time. The flow field is found to be very complex both in space and time. The low-frequency component of the spanwise velocity fluctuation becomes dominant in the near-wall region, with peaks in the power spectrum at frequencies fh/Uc=0.05 and fh/Uc=0.012. Using multiple ultrasound transducers, we also find that a streamwise vortex exists in the flow. Received: 20 March 2000 / Accepted: 15 January 2001 Published online: 29 November 2001  相似文献   

20.
This paper reports an experimental study of turbulent momentum and heat transport in the wake of a wall-mounted finite-length square cylinder, with its length-to-width ratio L/d = 3–7. The cylinder was slightly heated so that heat produced could be considered as a passive scalar. A moveable three-wire probe (a combination of an X-wire and a cold wire) was used to measure velocity and temperature fluctuations at a Reynolds number of 7,300 based on d and the free-stream velocity. Measurements were performed at 10 and 20d downstream of the cylinder at various spanwise locations. Results indicate that L/d has a pronounced effect on Reynolds stresses, temperature variance and heat fluxes. The downwash flow from the free end of the cylinder acts to suppress spanwise vortices and, along with the upwash flow from the cylinder base, makes the finite-length cylinder wake highly three-dimensional. Reynolds stresses, especially the lateral normal stress, are significantly reduced as a result of suppressed spanwise vortices at a small L/d. The downwash flow acts to separate the two rows of spanwise vortices further apart from the wake centerline, resulting in a twin-peak distribution in temperature variance. While the downwash flow entrains high-speed fluid into the wake, responsible for a small deficit in the time-averaged streamwise velocity near the free end, it does not alter appreciably the distribution of time-averaged temperature. It has been found that the downwash flow gives rise to a counter-gradient transport of momentum about the central region of the wake near the free end of the cylinder, though such a counter-gradient transport does not occur for heat transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号