首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper reports work on a nonpremixed half-dump combustor, in which methane is injected at the backward-facing step, and mixes and burns with the air flowing past the step in the unsteady recirculation zone. The flow and geometric parameters are widely varied, to gradually change from conditions of low-amplitude noise to excitation of high-amplitude discrete tones. The purpose of the work is to focus on the transition from the former condition to the latter, and to mark the onset of instability. Dimensionless groups such as the Helmholtz and Strouhal numbers are formed based on the observed dominant frequencies, whose variation with the air flow Reynolds number is used to identify the oscillations as those due to the natural acoustic modes or the vortex shedding process. High-speed chemiluminescence imaging reveals shedding of vortical structures in the flame zone. With variation in the conditions, flow-acoustic lock-on and transition from one vortex shedding mode to another is marked by nonlinearity in the corresponding amplitude variations. Such conditions are identified as the onset of instability in terms of the ratio of the flow time scale to the acoustic time scale and mapped against the operating fuel-air equivalence ratio of the combustor.  相似文献   

2.
The aeroacoustic sound generated from the flow around two NACA four-digit airfoils is investigated numerically, at relatively low Reynolds numbers that do not prompt boundary-layer transition. By using high-order finite-difference schemes to discretize compressible Navier–Stokes equations, the sound scattered on airfoil surface is directly resolved as an unsteady pressure fluctuation. As the wavelength of an emitted noise is shortened compared to the airfoil chord, the diffraction effect on non-compact chord length appears more noticeable, developing multiple lobes in directivity. The instability mechanism that produces sound sources, or unsteady vortical motions, is quantitatively examined, also by using a linear stability theory. While the evidence of boundary-layer instability waves is captured in the present result, the most amplified frequency in the boundary shear layer does not necessarily agree with the primary frequency of a trailing-edge noise, when wake instability is dominant in laminar flow. This contradicts the observation of other trailing-edge noise studies at higher Reynolds numbers. However, via acoustic disturbances, the boundary-layer instability may become more significant, through the resonance with the wake instability, excited by increasing a base-flow Mach number. Evidence suggests that this would correspond to the onset of an acoustic feedback loop. The wake-flow frequencies derived by an absolute-instability analysis are compared with the frequencies realized in flow simulations, to clarify the effect of an acoustic feedback mechanism, at a low Reynolds number.  相似文献   

3.
纵向受迫振荡圆柱绕流问题的数值模拟   总被引:2,自引:0,他引:2  
刘松  符松 《计算物理》2001,18(2):157-162
用有限体积法对平行于均匀来流方向受迫振荡的圆柱绕流问题进行了二维数值模拟.雷诺数选取Re=200、855、4000等几种亚临界雷诺数情况.通过研究不同振幅和振动频率下的流场结构和一些重要流动参数如升阻力系数、Strouhal数等随Re数、KC数、Stokes数的变化关系,验证了实验中观察到的一定条件下发生的"频率锁定"现象,并将涡脱落方式划分为三种主要模态.文中引入网格速度,对常用的处理速度与压力耦合的SIMPLE算法作了适当的补充和修改,以适应随时间变化的网格坐标.  相似文献   

4.
为了分析射流放水阀内部的非定常不可压粘性流场,在一般曲线坐标系下求解了以逆变速度为参数的不可压N-S方程和压力椭圆方程。计算采用了基于隐式SMAC格式的有限差分格式。在这种格式中,非定常流场的速度是通过使用Crank-Nicholson格式,并在每一时间步处以牛顿迭代的方法得到的;而压力椭圆方程是通过使用Tschebyscheff SLOR格式并交替改变计算方向而求解。通过使用交错网格和迎风差分,诸如改进的QUICK格式;计算过程中的误差和数值不稳定能够得到有效地控制。计算结果和实验观察得到的流动图谱对比表明,二者十分吻合。  相似文献   

5.
李一明  李宝宽  齐凤升  王喜春 《中国物理 B》2017,26(2):24701-024701
In order to study the interaction between two independent jets, a three-dimensional(3D) transient mathematical model is developed to investigate the flow field and acoustic properties of the two-stream jets. The results are compared with those of the single-stream jet at Mach number 0.9 and Reynolds number 3600. The large eddy simulation(LES) with dynamic Smagorinsky sub-grid scale(SGS) approach is used to simulate the turbulent jet flow structure. The acoustic field is evaluated by the Ffowcs Williams–Hawkings(FW-H) integral equation. Considering the compressibility of high-speed gas jets, the density-based explicit formulation is adopted to solve the governing equations. Meanwhile, the viscosity is approximated by using the Sutherland kinetic theory. The predicted flow characteristics as well as the acoustic properties show that they are in good agreement with the existing experimental and numerical results under the same flow conditions available in the literature. The results indicate that the merging phenomenon of the dual-jet is triggered by the deflection mechanism of the Coanda effect, which sequentially introduces additional complexity and instability of flow structure. One of the main factors affecting the dual-jet merging is the aperture ratio, which has a direct influence on the potential core and surrounding flow fluctuation. The analysis on the noise pollution reveals that the potential core plays a fundamental role in noise emission while the additional mixing noise makes less contribution than the single jet noise. The overall sound pressure level(OASPL) profiles have a directive property, suggesting an approximate 25° deflection from the streamwise direction, however, shifting toward lateral direction of about 10° to 15° in the dual-jet. The conclusion obtained in this study can provide valuable data to guide the development of manufacturing-green technology in the multi-jet applications.  相似文献   

6.
李晓峰  朱本仁 《计算物理》2001,18(2):115-118
研究了在渗透系数相差不大的渗流场中椭圆型偏微分方程的系数反问题,通过把CT技术中的Radon变换推广到渗流力学中,给出了渗透系数的计算方法和实例。  相似文献   

7.
In this study we numerically investigate large scale premixed flames in weakly turbulent flow fields. A large scale flame is classified as such based on a reference hydrodynamic lengthscale being larger than a neutral (cutoff) lengthscale for which the hydrodynamic or Darrieus–Landau (DL) instability is balanced by stabilizing diffusive effects. As a result, DL instability can develop for large scale flames and is inhibited otherwise. Direct numerical simulations of both large scale and small scale three-dimensional, weakly turbulent flames are performed at constant Karlovitz and turbulent Reynolds number, using two paradigmatic configurations, namely a statistically planar flame and a slot Bunsen flame. As expected from linear stability analysis, DL instability induces its characteristic cusp-like corrugation only on large scale flames. We therefore observe significant morphological and topological differences as well as DL-enhanced turbulent flame speeds in large scale flames. Furthermore, we investigate issues related to reaction rate modeling in the context of flame surface density closure. Thicker flame brushes are observed for large scale flames resulting in smaller flame surface densities and overall larger wrinkling factors.  相似文献   

8.
Combustion dynamics leading to thermoacoustic instability in a rearward-facing step stabilized premixed flame is experimentally examined with the objective of investigating the fluid dynamic mechanism that drives heat release rate fluctuations, and how it couples with the acoustic field. The field is probed visually, using linear photodiode arrays that capture the spatiotemporal distribution of CH* and OH*; an equivalence ratio monitor; and a number of pressure sensors. Results show resonance between the acoustic quarter wave mode of the combustion tunnel and a fluid dynamic mode of the wake. Under unstable conditions, the flame is convoluted around a large vortex that extends several step heights downstream. During a typical cycle, while the velocity is decreasing, the vortex grows, and the flame extends downstream around its outer edge. As the velocity reaches its minimum, becoming mostly negative, the vortex reaches its maximum size, and the flame collides with the upper wall; its leading edge folds, trapping reactants pockets, and its trailing edge propagates far upstream of the step. In the next phase, while the velocity is increasing, the heat release grows rapidly as trapped reactant’ pockets are consumed by flames converging towards their centers, and the upstream flame is dislodged back downstream. The heat release rate reaches its maximum halfway into the velocity rise period, leading the maximum velocity by about 90°. In this quarter-wave mode, the pressure leads the velocity by 90° as well, that is, it is in phase with the heat release rate. Numerical modeling results support this mechanism. Equivalence ratio contribution to the instability mechanism is shown to be minor, i.e., heat release dynamics are governed by the cyclical formation of the wake vortex and its interaction with the flame.  相似文献   

9.
An experimental study is conducted to investigate the effect of Le on the transition to secondary acoustic instability when the curvature of the flame front in a tube is induced and controlled by using external laser irradiation. Once a downward-propagating flame in the primary acoustic instability region is exposed to a specific laser irradiation condition, the flame is transferred to the secondary acoustic instability region. The transition limit is decreased, that is, transition occurs is an easier manner, with increasing laser power input. While the flame propagates with increasing laser irradiation, the flame first exhibits a convex curvature owing to laser irradiation and then a concave structure is formed owing to buoyancy-induced flow. Two types of transition behavior caused by the concave structure and the convex structure are observed. The conflicting thermal-diffusive effect depending on Le leads to the differing transition behaviors. Based on an evaluation of the flame stretch effect attributed to the flame front curvature, it is confirmed that the Lewis number effect influences the transition criteria.  相似文献   

10.
The generation of noise in subsonic high Reynolds number single and coaxial turbulent jets is analyzed by a hybrid method. The computational approach is based on large-eddy simulations (LES) and solutions of the acoustic perturbation equations (APE). The method is used to investigate the acoustic fields of one isothermal single stream jet at a Mach number 0.9 and a Reynolds number 400,000 based on the nozzle diameter and two coaxial jets whose Mach number and Reynolds number based on the secondary jet match the values of the single jet. One coaxial jet configuration possesses a cold primary flow, whereas the other configuration has a hot primary jet. Thus, the configurations allow in a first step the analysis of the relationship of the flow and acoustic fields of a single and a cold coaxial jet and in a second step the investigation of the differences of the fluid mechanics and aeroacoustics of cold and hot coaxial jets. For the isothermal single jet the present hybrid acoustic computation shows convincing agreement with the direct acoustic simulation based on large-eddy simulations. The analysis of the acoustic field of the coaxial jets focuses on two noise sources, the Lamb vector fluctuations and the entropy sources of the APE equations. The power spectral density (PSD) distributions evidence the Lamb vector fluctuations to represent the major acoustic sources of the isothermal jet. Especially the typical downstream and sideline acoustic generations occur on a cone-like surface being wrapped around the end of the potential core. Furthermore, when the coaxial jet possesses a hot primary jet, the acoustic core being characterized by the entropy source terms increases the low frequency acoustics by up to 5 dB, i.e., the sideline acoustics is enhanced by the pronounced temperature gradient.  相似文献   

11.
We present a lattice-Boltzmann method coupled with an immersed boundary technique for the simulation of bluff body flows. The lattice-Boltzmann method for the modeling of the Navier–Stokes equations, is enhanced by a forcing term to account for the no-slip boundary condition on a non-grid conforming boundary. We investigate two alternatives of coupling the boundary forcing term with the grid nodes, namely the direct and the interpolated forcing techniques. The present LB–IB methods are validated in simulations of the incompressible flow past an impulsively started cylinder at low and moderate Reynolds numbers. We present diagnostics such as the near wall vorticity field and the drag coefficient and comparisons with previous computational and experimental works and assess the advantages and drawbacks of the two techniques.  相似文献   

12.
Compressible flow over a flat plate with two localised and well-separated roughness elements is analysed by global frequency-response analysis. This analysis reveals a sustained feedback loop consisting of a convectively unstable shear-layer instability, triggered at the upstream roughness, and an upstream-propagating acoustic wave, originating at the downstream roughness and regenerating the shear-layer instability at the upstream protrusion. A typical multi-peaked frequency response is recovered from the numerical simulations. In addition, the optimal forcing and response clearly extract the components of this feedback loop and isolate flow regions of pronounced sensitivity and amplification. An efficient parametric-sensitivity framework is introduced and applied to the reference case which shows that first-order increases in Reynolds number and roughness height act destabilising on the flow, while changes in Mach number or roughness separation cause corresponding shifts in the peak frequencies. This information is gained with negligible effort beyond the reference case and can easily be applied to more complex flows.  相似文献   

13.
A numerical investigation of the interaction between a spray flame and an acoustic forcing of the velocity field is presented in this paper. In combustion systems, a thermoacoustic instability is the result of a process of coupling between oscillations in heat released and acoustic waves. When liquid fuels are used, the atomisation and the evaporation process also undergo the effects of such instabilities, and the computational fluid dynamics of these complex phenomena becomes a challenging task. In this paper, an acoustic perturbation is applied to the mass flow of the gas phase at the inlet and its effect on the evaporating fuel spray and on the flame front is investigated with unsteady Reynolds averaged Navier-Stokes numerical simulations. Two flames are simulated: a partially premixed ethanol/air spray flame and a premixed pre-vaporised ethanol/air flame, with and without acoustic forcing. The frequencies used to perturb the flames are 200 and 2500 Hz, which are representative for two different regimes. Those regimes are classified based on the Strouhal number St = (D/U)ff: at 200 Hz, St = 0.07, and at 2500 Hz, St = 0.8. The exposure of the flame to a 200 Hz signal results in a stretching of the flame which causes gas field fluctuations, a delay of the evaporation and an increase of the reaction rate. The coupling between the flame and the flow excitation is such that the flame breaks up periodically. At 2500 Hz, the evaporation rate increases but the response of the gas field is weak and the flame is more stable. The presence of droplets does not play a crucial role at 2500 Hz, as shown by a comparison of the discrete flame function in the case of spray and pre-vaporised flame. At low Strouhal number, the forced response of the pre-vaporised flame is much higher compared to that of the spray flame.  相似文献   

14.
The dynamic response of a turbulent, perfectly premixed flame, stabilized by means of an aerodynamic flameholder, to an upstream acoustic perturbation of the approaching flow is investigated by means of experimental and analytical tools, and simulated through a large eddy simulation of the reacting flow. It is found that the main contribution to the unsteady heat release rate is due to the fluctuation in area of the flame front, which in turn is strongly influenced by the corresponding response of the flow field to the acoustic perturbation. Numerical data show that perturbing a swirling flow that undergoes vortex breakdown results in a strong displacement of the breakdown position along its axis, while its outer part only weakly responds to the perturbation. This results in a translational motion of the flame's anchoring point, which ultimately leads to an unsteady variation of the flame area and, therefore, of the amount of heat released. This unsteady heat release mechanism can be described in a way similar to that used for characterizing the dynamic behaviour of ducted flames, stabilized by means of a bluff-body flameholder; differently from these models, however, the anchoring point of the flame can now fluctuate freely in space, and the time delay of the system is no longer identified with the travelling time of a perturbation of the flame element along it, but is now associated with the oscillation of the breakdown position. Controlling the interaction between breakdown and acoustics should allow for obtaining optimal flame dynamics, so as to limit and possibly avoid the occurrence of strong pulsation peaks whenever the combustion device is operated in an acoustically closed system.  相似文献   

15.
李洋  苏婷  梁宏  徐江荣 《物理学报》2018,67(22):224701-224701
提出了一种改进的基于相场理论的两相流格子Boltzmann模型.通过引入一种新的更加简化的外力项分布函数,使得此模型克服了前人工作中界面力尺度与理论分析不一致的问题,并且通过Chapman-Enskog多尺度分析表明,所提出的模型能够准确恢复到追踪界面的Cahn-Hilliard方程和不可压的Navier-Stokes方程,并且宏观速度的计算更为简化.利用所提模型对几个经典两相流问题,包括静态液滴测试、液滴合并问题、亚稳态分解以及瑞利-泰勒不稳定性进行了数值模拟,发现本模型可以获得量级为10-9极小的虚假速度,并且这些算例获取的数值解与解析解或已有的文献结果相吻合,从而验证了模型的准确性和可行性.最后,利用所发展的两相流格子Boltzmann模型研究了随机扰动的瑞利-泰勒不稳定性问题,并着重分析了雷诺数对流体相界面的影响.发现对于高雷诺数情形,在演化前期,流体界面出现一排“蘑菇”形状,而在演化后期,流体界面呈现十分复杂的混沌拓扑结构.不同于高雷诺数情形,低雷诺数时流体界面变得相对光滑,在演化后期未观察到混沌拓扑结构.  相似文献   

16.
The stability to small perturbations of a 2D flow of a conducting viscous fluid with large Reynolds numbers in a longitudinal magnetic field is investigated. A complete linearized system of magnetohydrodynamics equations is considered using the method of collocations and the differential sweep method. The dependences of the critical Reynolds numbers on the electrical conductivity are analyzed in detail. A new instability branch for large Reynolds numbers and a jumpwise variation of the critical Reynolds numbers are discovered.  相似文献   

17.
Three-dimensional (3D) direct numerical simulations (DNS) of the viscous incompressible fluid flow through a helical pipe with circular cross section were performed. The flow is governed by three parameters: the Dean number (or the Reynolds number), curvature, and torsion. First, we obtained steady solutions by steady 3D calculations, where dual solutions were found, one was uniform in the pipe axial direction and the other varied very slowly, if torsion exceeded a critical value. Then, the instability of the steady solutions obtained was studied by unsteady 3D calculations. We obtained critical Reynolds numbers of steady to unsteady transition by observing the behaviors of the unsteady solutions. The present results of the critical Reynolds number nearly agreed with those by the 2D linear stability analysis (Yamamoto et al. [9]) except for the lowest critical Reynolds number region, where the present study gave the critical Reynolds number much less than that obtained by the 2D linear stability analysis. We found the vortical structures in the form of a standing wave slightly above the marginal instability state, which is a trigger of explosive 3D instability.  相似文献   

18.
Our study is focused on a phenomenon often encountered in flow carrying pipes, since flow instabilities caused by geometric features may generate acoustic signals and, thereafter, interact with these signals in such a way that powerful pure tones are produced. A modern example is found in the so-called ‘singing risers’, or the gas pipes connecting gas production platforms to the transport network. But the flow generated resonance in a fully corrugated circular pipe may be silenced by the addition of relatively low frequency flow oscillations induced by an acoustic generator. Experiments reported here, aimed at investigating in more detail the coupling between the flow in the pipe, the acoustically generated flow oscillations and the emitted resulting noise, are performed in a specifically designed facility. A rectangular transparent channel using glass walls enables us to use optical techniques to describe in detail the flow field in the corrugation vicinity, in addition to more standard hot-wire anemometry and acoustic pressure measurements with microphones, with and without the acoustically generated low-frequency oscillations.  相似文献   

19.
An experimental study of the flow field and acoustic properties of a low Reynolds number (Re ? 3600), M = 0·9 jet has been performed in our low pressure anechoic test chamber. The mean flow field was surveyed with a conventional Pitot pressure probe and flow fluctuations were detected with a normal hot wire probe. Also, condenser microphone measurements were made in the acoustic field. The major goal of the study was to develop a better understanding of the noise generation mechanisms of subsonic jets. The flow fluctuations within the jet were found to be dominated initially by a relatively discrete, large-scale, wave-like instability centered around a Strouhal number of 0·44. The axial wavelength of this instability was determined to be 1·45 jet diameters and its azimuthal character includes the n = 0 and n = ± 1 modes. The growth of this instability coupled with its non-linear breakdown are major contributors to the termination of the potential core region of the jet. The acoustic field of the jet, in contrast to the flow field, has a broad frequency spectrum with a peak amplitude near a Strouhal number of St = 0·2. The results indicate that a non-linear mechanism involving the large scale flow instability is responsible for a dominant portion of the noise generated from this jet.  相似文献   

20.
In this paper, we investigate the coupled behvior of the acoustic field in the confinement and the unsteady flame dynamics in a laboratory scale spray combustor. We study this interaction during the intermittency route to thermoacoustic instability when the location of the flame is varied inside the combustor. As the flame location is changed, the synchronization properties of the coupled acoustic pressure and heat release rate signals change from desynchronized aperiodicity (combustion noise) to phase synchronized periodicity (thermoacoustic instability) through intermittent phase synchronization (intermittency). We also characterize the collective interaction between the multiple flamelets anchored at the flame holder and the acoustic field in the system, during different dynamical states observed in the combustor operation. When the signals are desynchronized, we notice that the flamelets exhibit a steady combustion without the exhibition of a prominent feedback with the acoustic field. In a state of intermittent phase synchronization, we observe the existence of a short-term coupling between the heat release rate and the acoustic field. We notice that the onset of collective synchronization in the oscillations of multiple flamelets and the acoustic field leads to the simultaneous emergence of periodicity in the global dynamics of the system. This collective periodicity in both the subsystems causes enhancement of oscillations during epochs of amplitude growth in the intermittency signal. On the contrary, the weakening of the coupling induces suppression of periodic oscillations during epochs of amplitude decay in the intermittency signal. During phase synchronization, we notice a sustained synchronized movement of all flamelets with the periodicity of the acoustic cycle in the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号