首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we investigate the coupled behvior of the acoustic field in the confinement and the unsteady flame dynamics in a laboratory scale spray combustor. We study this interaction during the intermittency route to thermoacoustic instability when the location of the flame is varied inside the combustor. As the flame location is changed, the synchronization properties of the coupled acoustic pressure and heat release rate signals change from desynchronized aperiodicity (combustion noise) to phase synchronized periodicity (thermoacoustic instability) through intermittent phase synchronization (intermittency). We also characterize the collective interaction between the multiple flamelets anchored at the flame holder and the acoustic field in the system, during different dynamical states observed in the combustor operation. When the signals are desynchronized, we notice that the flamelets exhibit a steady combustion without the exhibition of a prominent feedback with the acoustic field. In a state of intermittent phase synchronization, we observe the existence of a short-term coupling between the heat release rate and the acoustic field. We notice that the onset of collective synchronization in the oscillations of multiple flamelets and the acoustic field leads to the simultaneous emergence of periodicity in the global dynamics of the system. This collective periodicity in both the subsystems causes enhancement of oscillations during epochs of amplitude growth in the intermittency signal. On the contrary, the weakening of the coupling induces suppression of periodic oscillations during epochs of amplitude decay in the intermittency signal. During phase synchronization, we notice a sustained synchronized movement of all flamelets with the periodicity of the acoustic cycle in the system.  相似文献   

2.
This paper reports work on a nonpremixed half-dump combustor, in which methane is injected at the backward-facing step, and mixes and burns with the air flowing past the step in the unsteady recirculation zone. The flow and geometric parameters are widely varied, to gradually change from conditions of low-amplitude noise to excitation of high-amplitude discrete tones. The purpose of the work is to focus on the transition from the former condition to the latter, and to mark the onset of instability. Dimensionless groups such as the Helmholtz and Strouhal numbers are formed based on the observed dominant frequencies, whose variation with the air flow Reynolds number is used to identify the oscillations as those due to the natural acoustic modes or the vortex shedding process. High-speed chemiluminescence imaging reveals shedding of vortical structures in the flame zone. With variation in the conditions, flow-acoustic lock-on and transition from one vortex shedding mode to another is marked by nonlinearity in the corresponding amplitude variations. Such conditions are identified as the onset of instability in terms of the ratio of the flow time scale to the acoustic time scale and mapped against the operating fuel-air equivalence ratio of the combustor.  相似文献   

3.
Aeroacoustic instabilities occur in many applications of technological interest and have undesirable effects on the steady operation of the system. Passive and active means are sought to reduce the level of oscillation and eliminate the instability. In the case of segmented solid rocket motors, observations indicate that low-frequency oscillations are generated by a coupling between vortex shedding in shear regions established in the flow and the acoustic eigenmodes of the system. This process is investigated in this article on a model-scale configuration representing the geometry of the motor. An active control loop is exploited to obtain resonant and non-resonant conditions for the same operating point. Adaptive techniques are used to stabilize the flow and the experiment serves as a testbed for active control. It is shown that an adaptive system may be applied to essentially suppress the pressure oscillations. The instability mechanism is then studied by analyzing the flow field with particle image velocimetry. It is found that control noticeably modifies the mean flow structure. Detailed studies of the vortex pattern in the shedding region indicate that the concentrated vorticity and the corresponding circulation values remain in the same range but that vorticity is shed more randomly when the resonance is eliminated by the controller. This indicates that control is achieved by reducing the level of organization in the vortex pattern. Under resonant conditions the level of pressure fluctuations results from coherent interactions between vortices and the downstream nozzle. This process feeds energy in one of the acoustic modes of the system enhancing the pressure level. It is made less effective by the control loop.  相似文献   

4.
The instability attenuation mechanism of fuel staging was investigated in a CH4/H2 fueled dual-nozzle gas turbine combustor. Fuel staging was implemented using an asymmetry in fuel composition between the two nozzles. The fuel composition of the upper nozzle was varied while keeping that of the lower nozzle constant. Under these conditions, the self-excited and forced responses of fuel-staged flames were analyzed using OH* chemiluminescence imaging, OH planar laser-induced fluorescence, and particle image velocimetry. In the self-excited measurements, although strong combustion instability was exhibited in the symmetric condition, it weakened gradually with increasing asymmetry in fuel composition. The symmetric flame exhibited significant fluctuations in the heat release rate around the flame tip, which acted as the primary cause of driving combustion instability. However, in asymmetric flames, the H2 addition induced phase leads in heat release rate fluctuations at the upper region, which damped combustion instability. Thus, our observations revealed a high correlation between the phase leads and the attenuation of combustion instability. Analyses of the forced responses showed that the heat release rate fluctuations were induced by interactions between the flame and the shedding vortex released from the nozzle tip into the downstream. Although these characteristics of shedding vortices did not depend on the H2 addition, the change in the axial position of the flame caused by the H2 addition induced the relocation of the site, at which the flame interacted with the vortex. Subsequently, it induced phase leads in the heat release rate fluctuations. The phase difference of heat release rate fluctuations between the two flames due to this phase leads enlarged progressively with increasing asymmetry in fuel composition, leading to the attenuation of combustion instability in asymmetric conditions.  相似文献   

5.
We delineate an experimental observation of the effect of the magnetic field along with mesh grid biasing in the presence of a cylindrical plasma bubble in a filamentary discharge magnetised plasma system. The cylindrical mesh grid of 80% optical transparency has been negatively biased and introduced in the plasma for creating a plasma bubble. Plasma floating potential fluctuations have been taken outside (LP1) and inside (LP2) of the plasma bubble. It has been noticed that as the external magnetic field is increased the oscillation pattern shows intermittent route to chaos as the system evolved from regular type of relaxation oscillations (of larger amplitude) to an irregular type of oscillations (of smaller amplitude) We have used recurrence quantification analysis (RQA) to the observed intermittency to chaos in the plasma. The main measures of RQA are laminarity (LAM) and determinism (DET). The laminarity measure can be associated with the average time between the chaotic burst in the intermittency. It has also been observed that the DET depends on the control parameter and decreases exponentially, features like a dip in skewness and a hump in the kurtosis with the variation of control parameter have been noticed, which are the strong evidence of intermittent behaviour of the system. Further, a numerical model has been developed to the observed experimental analysis of the intermittent route to chaos.  相似文献   

6.
This paper describes an experimental investigation of the feasibility of using “slow” active control approaches, which “instantaneously” change liquid fuel spray properties, to suppress combustion instabilities. The objective of this control approach was to break up the feedback between the combustion process heat release and combustor pressure oscillations that drive the instability by changing the characteristics of the combustion process (e.g., the characteristic combustion time). To demonstrate the feasibility of such control, this study used a proprietary fuel injector (NanomiserTM), which can vary its fuel spray properties, to investigate the dependence of acoustics–combustion process coupling, i.e., the driving of combustion instabilities, upon the fuel spray properties. This study showed that by changing the spray characteristics it is possible to significantly damp combustion instabilities. Furthermore, using combustion zone chemiluminescence distributions, which were obtained by Abel’s deconvolution synchronized with measured acoustic data, it has been shown that the instabilities were mostly driven midway between the combustor centerline and wall, a short distance downstream from the flame holder, where the mean axial flow velocity is approximately zero in the vortex near the flame holder. The results of this study strongly suggest that a “slow” active control system that employs controllable fuel injectors could be effectively used to prevent the onset of detrimental combustion instabilities.  相似文献   

7.
A new linear centrifugal-dissipative mechanism is proposed that explains the vortex asymmetry observed, in particular, in the structure of low-frequency anticyclonic Rossby vortices. It is shown that the relevant centrifugal-dissipative instability, which spontaneously breaks the chiral symmetry of the vortices, takes place only in the range ω<Ω, where ω is the frequency of small oscillations corresponding to the effective solid-body rotation of a vortex and Ω is the rotation rate of a noninertial frame of reference. The onset of the instability is associated with the existence of an optimum magnitude of the frictional force. In the vortex model based on a two-dimensional oscillator with the natural frequency ω in a noninertial reference frame rotating at the rate Ω, the instability shows up as an exponential increase in the total angular momentum. It is noted that the centrifugal dissipative instability may also manifest itself in the seismically active regions of the world.  相似文献   

8.
As suggested by the strong effect resonances and feedback mechanisms can exert upon vortices shed from blunt bodies, it is proposed that the discrete frequency, self-excited vortex shedding process itself is governed by a resonance-like mechanism. With the assumption that to a first approximation the shedding frequency is determined by the behaviour in the linear regime, the resonance hypothesis is found to lead to a bifurcation condition (direct resonance condition) of the local instability eigenvalue. In a corresponding initial value formulation the same condition separates a subcritical region of locally absolute instability from a supercritical region of locally convective instability. The critical basic wake profile corresponding to the bifurcation condition is found to be near the end of the potential core. The pertinent frequency is close to experimentally found values if, in the absence of numerically determined (physically unstable) solutions of the steady Navier-Stokes equations, the steady basic wake flow is modelled realistically. For asymmetrical steady wakes a limiting asymmetry seems to exist beyond which no time-harmonic resonance could be determined. This provides a link to mixing layers where apparently only convective instabilities are possible.  相似文献   

9.
针对液氧/煤油火箭发动机模型燃烧室实现了三维非稳态两相燃烧过程的数值模拟,得到的燃烧室截面平均压力和平均速度与实验吻合。在初边值条件不施加任何扰动的情况下,得到了燃烧室压力自激振荡过程,并研究了液氧和煤油喷嘴雾化角对燃烧室压力振荡的影响。计算结果表明:当雾化角为40°或120°时,由于燃料与氧化剂喷雾锥重叠区域较小或较大,导致了推进剂混合很差或很好,不易在燃烧室头部出现局部爆炸性的可燃混气团,致使燃烧室压力振荡强度较弱;而当雾化角为中间值65°时,易于出现爆炸性的可燃气团并导致剧烈的压力振荡,使燃烧室中出现燃烧不稳定性。因此,雾化角的合理设计是抑制燃烧不稳定性的一种途径。  相似文献   

10.
An unstable mixing layer, in conjunction with free surface wave effects, can give rise to well-defined subharmonic oscillations of the vortex shedding frequency provided certain streamwise phase conditions are satisfied. Visualization of these oscillations, forces acting on the impingement edge, and streamwise evolution of velocity spectra are addressed.  相似文献   

11.
Experiments have been made to study the effect of a splitter-plate on the oscillation amplitudes, wake fluctuations and unsteady surface pressures of a shell undergoing ovalling oscillations in a cross flow in a wind tunnel. The results suggest that there is no major effect of the splitter-plate on these quantities and that periodic vortex shedding is probably the case of the ovalling.  相似文献   

12.
Multimoment hydrodynamics equations are used to solve the problem of flow around a quiescent solid sphere. The solutions to the multimoment hydrodynamics equations are found, which enable to interpret of the phenomenon of vortex shedding. The solutions give a pattern of instability development that qualitatively reproduces experimental data over a wide range of Reynolds numbers. The replacement of one unstable flow mode by another unstable mode is governed the tendency of the system to find the fastest way to depart from the state of statistical equilibrium. After stability loss, the system does not reach a new stable state. Such a scenario is at odds with the ideas of classical hydrodynamics, which interprets the development of instability in terms of a bifurcation transition from one stable state to another. This picture presented shows the direction of solving the problems faced by classical hydrodynamics in the interpretation of the phenomenon of vortex shedding.  相似文献   

13.
Combustion instabilities were investigated experimentally for a hydrogen-rich combustion in a model afterburner installed at the end of a high-enthalpy wind tunnel. Air was supplied at 0.3 MPa and 950 K. The combustion instabilities were studied with the time-resolved measurements of a near-infrared (NIR) emission from water molecules over 780 nm using a high-speed video camera. Pressure was also measured in the combustor. The pressure and the NIR images were analyzed by data-driven approach, which include the fast Fourier transform (FFT), the wavelet transform, the dynamic mode decomposition (DMD) and the Gaussian process latent variable methods (GP-LVM). Thermoacoustic instability was observed under a rich condition, and the amplitude of the pressure oscillation was the maximum at the overall equivalence ratio of approximately 2.4 or 2.7 as a result of the FFT. The combustion dynamics were investigated in detail for an experimental run at the equivalence ratio of 2.4. A pressure spectrogram indicated a flame–vortex interaction with a Strouhal number of 0.5 (2300 Hz), thermoacoustic instability (560 Hz), and their transitions with the wavelet transform. For NIR images, the same tendency was also observed in the spectrogram of the modes obtained by the Gabor-filtered DMD, which could clearly resolve the high-order harmonic modes of the flame–vortex interaction and the thermoacoustic instability. Furthermore, NIR images were analyzed with GP-LVM to study the evolution of the combustion dynamics in a three-dimensional latent space. Recurrence plots with the Euclidean distance function were used to visualize the evolutions of the combustion dynamics. A limit cycle behavior of the flame–vortex interaction was clearly observed, whereas the limit cycle of the thermoacoustic instability showed more complicated behaviors. The transition behaviors of the instabilities were observed in the recurrence plots in detail, indicating that the flame–vortex interaction excited the fourth harmonic mode of the thermoacoustic instability, followed by the basic mode.  相似文献   

14.
Coherent structures, such as those arising from hydrodynamic instabilities or excited by thermoacoustic oscillations, can significantly impact flame structure and, consequently, the nature of heat release. The focus of this work is to study how coherent oscillations of varying amplitudes can impact the growth of the flame brush in a bluff-body stabilized flame and how this impact is influenced by the free stream turbulence intensity of the flow approaching the bluff body. We do this by providing external acoustic excitation at the natural frequency of vortex shedding to simulate a highly-coupled thermoacoustic instability, and we vary the in-flow turbulence intensity using perforated plates upstream of the flame. We use high-speed stereoscopic particle image velocimetry to obtain the three-component velocity field and we use the Mie-scattering images to quantify the behavior of the flame edge. Our results show that in the low-turbulence conditions, presence of high-amplitude acoustic excitation can cause the flame brush to exhibit a step-function growth, indicating that the presence of strong vortical structures close to the flame can suppress flame brush growth. This impact is strongly dependent on the in-flow turbulence intensity and the flame brush development in conditions with higher levels of in-flow turbulence are minimally impacted by increasing amplitudes of acoustic excitation. These findings suggest that the sensitivity of the flow and flame to high-amplitude coherent oscillations is a strong function of the in-flow turbulence intensity.  相似文献   

15.
本研究发展了U-RANS/PDF混合算法研究湍流和化学反应相互作用对燃烧稳定性的影响,采用有限体积和Monte Carlo相结合的方法在非结构网格中求解相容的U-RANS方程和脉动速度-湍流频率-标量的联合PDF方程.本文对钝体火焰驻定器后冷态流场进行了计算,结果表明此混合算法能够捕捉流场中非稳态的漩涡脱落现象.着重研究了湍流频率模型系数的改变对漩涡脱落频率以及拟序结构在动量输运中的作用的影响.  相似文献   

16.
The periodic shedding of vortices that accompanies the cross flow past a bluff cylindrical body can excite the body into resonant transverse oscillations when the vortex shedding and body natural frequencies are sufficiently near to one another. A mathematical model that enables one to predict the vortex-excited resonant response of bluff cylinders is introduced here. A modified Van der Pol equation is employed as the governing equation for the fluctuating lift on the cylinder and is coupled to the equation for the oscillatory motion of the body. When appropriate choices are made for the empirical parameters in the model, the calculated responses of four spring mounted systems are in good quantitative agreement with the observed responses from wind tunnel experiments. A set of relations is postulated between the empirical parameters and the physical mass and damping parameters that govern the oscillatory response. These relations are then employed with the model to calculate the vortex-excited responses of several other systems. Good quantitative agreement with the measured data is again obtained.  相似文献   

17.
Sources of noise present in swirl burners in the non-combustive and combustive cases are experimentally investigated. It is shown that under the non-combustive conditions, the main source of noise is the precessing vortex core, a three-dimensional time-dependent instability present in such burners at high degrees of swirl. With combustion, the amplitude of this instability is damped and the combustion roar is predominant. Regimes of noise (combustion roar) generation in a flame can be located by measurements of temperature fluctuations, as it is demonstrated that there is a good correlation with pressure fluctuations.  相似文献   

18.
We report an experimental method for inhibiting vortex shedding generated by the Bénard von Kármán instability (BvK) in the wake of a cylinder. We show that monitoring the pressure at the front stagnation point of a circular cylinder can completely suppress the Bénard-von Kármán instability for Reynolds numbers in the range 48.5<Re<150. We then study some properties of the BvK instability in the presence of suction at the front stagnation point and mention that this method can be used to generate well-controlled localized vortical structures in the form of vortex pairs. Received 2 August 1999  相似文献   

19.
Combustion dynamics of inverted conical flames   总被引:2,自引:0,他引:2  
An inverted conical flame anchored on a central bluff-body in an unconfined burner configuration features a distinctive acoustic response. This configuration typifies more complex situations in which the thermo-acoustic instability is driven by the interaction of a flame with a convective vorticity mode. The axisymmetric geometry investigated in this article features a shear region between the reactive jet and the surrounding atmosphere. It exhibits self-sustained oscillations for certain operating conditions involving a powerful flame collapse phenomenon with sudden annihilation of flame surface area. This is caused by a strong interaction between the flame and vortices created in the outer jet shear layer, a process which determines the amplitude of heat release fluctuation and its time delay with respect to incident velocity perturbations. This process also generates an acoustic field that excites the burner and synchronizes the vortex shedding mechanism. The transfer functions between the velocity signal at the burner outlet and heat release are obtained experimentally for a set of flow velocities fluctuations levels. It is found that heat release fluctuations are a strong function of the incoming velocity perturbation amplitude and that the time delay between these two quantities is mainly determined by the convection of the large scale vortices formed in the jet shear layer. A model is formulated, which suitably describes the observed instabilities.  相似文献   

20.
本文采用DPIV实验研究方法,在不同转速工况下,对开式前缘弯掠子午加速风扇转子叶尖涡在叶轮尾缘的脱落流动现象进行了测量.结果表明:在不同转速下,转子尾缘处均存在明显的叶尖涡流动现象.该叶尖脱落涡流动现象具有相似性,随着转速的增大,叶尖涡区和吸力面之间的径向速度差增大,叶尖涡强度随转速增加而增强.随着转速的增大,叶尖涡和主流相互作用加剧,涡量负值增大,叶尖涡影响区域也逐渐扩大.径向速度梯度同样随转速增大而增大的结果,增强了叶尖涡对尾迹区作用的影响.最后,本文通过CFD对该开式风扇叶尖涡流动现象进行模拟,其结果给出了相似的叶尖涡在转子尾缘脱落流动现象,为前缘弯掠开式子午加速风扇在户室中央空调室外机上的应用和风机系统的优化设计及其降噪研究提供了重要的内流数据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号