首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The molecular-size fractionation of aquatic humic substances (HS) and their metal species by means of a novel sequential-stage ultrafiltration (UF) device equipped with five appropriate ultramembranes (1, 5, 10, 50 and 100 kD) is described. First of all, the concentration dynamics of macromolecules, particulary HS, during five-stage UF and its subsequent washing step has been modelled. Based on these results, the fractionation of aquatic HS (from ground and bog water) by means of multistage UF has been optimized for an analytical scale (10 ml sample, 1 mg/ml HS, 10 ml washing solution, pH 6.0). The molecular size-distribution of selected aquatic HS (BOC 1/2 from the "DFG-Versuchsfeld Bocholt", VM 5 from "Venner Moor", Germany) studied by five-stage UF exhibited strong systematic influences of the procedure used for their isolation. The molecular-size distribution of HS obtained by on-line UF and gel permeation chromatography (GPC) showed a satisfactory agreement in the range 1-50 kD. Moreover, when interrupting multistage UF for > 48 h a slow transformation in the HS samples has been found as gradually additional HS fractions of < 1 kD have been formed. Besides unloaded HS molecules, the molecular-size distribution of freshly formed metal species of HS (1.0 mg metal/g HS of Al(III), Cd(II), Cu(II), Fe(III), Mn(II), Ni(II), Pb(II), Zn(II), each) has been characterized by multistage UF as a function of pH-value, degree of loading and complexation time. Metal determinations as carried out by flame AAS, showed that considerable metal fractions in HS especially are present in molecules > 50 kD, which seemed to be rather acid-inert. With complexation times of < 2 days a transient shift of the molecular size distribution of both HS and their metal species (e.g., Al(III), Fe(III) to higher values (> 10 kD) has been found.  相似文献   

2.
The molecular-size fractionation of aquatic humic substances (HS) and their metal species by means of a novel sequential-stage ultrafiltration (UF) device equipped with five appropriate ultramembranes (1, 5, 10, 50 and 100 kD) is described. First of all, the concentration dynamics of macromolecules, particulary HS, during five-stage UF and its subsequent washing step has been modelled. Based on these results, the fractionation of aquatic HS (from ground and bog water) by means of multistage UF has been optimized for an analytical scale (10 ml sample, 1 mg/ml HS, 10 ml washing solution, pH 6.0). The molecular size-distribution of selected aquatic HS (BOC 1/2 from the DFG-Versuchsfeld Bocholt, VM 5 from Venner Moor, Germany) studied by five-stage UF exhibited strong systematic influences of the procedure used for their isolation. The molecular-size distribution of HS obtained by on-line UF and gel permeation chromatography (GPC) showed a satisfactory agreement in the range 1–50 kD. Moreover, when interrupting multistage UF for > 48 h a slow transformation in the HS samples has been found as gradually additional HS fractions of < 1 kD have been formed. Besides unloaded HS molecules, the molecular-size distribution of freshly formed metal species of HS (1.0 mg metal/g HS of Al(III), Cd(II), Cu(II), Fe(III), Mn(II), Ni(II), Pb(II), Zn(II), each) has been characterized by multistage UF as a function of pH-value, degree of loading and complexation time. Metal determinations as carried out by flame AAS, showed that considerable metal fractions in HS especially are present in molecules > 50 kD, which seemed to be rather acid-inert. With complexation times of < 2 days a transient shift of the molecular size distribution of both HS and their metal species (e.g., Al(III), Fe(III) to higher values (> 10 kD) has been found.  相似文献   

3.
The chromatographic fractionation of aquatic humic substances (HS) onto iron(III)-coated cellulose (Cell-Fe(III)) as a metal-loaded adsorbent is described, analogously to the separation principle of the well-established metal affinity chromatography (MAC). For that purpose the sorption of HS from different aquatic origin on that collector was characterized by their kinetics and equilibrium distribution coefficients Kd. Based on Kd values of 103 to 104,mL/g, and fast sorption kinetics a preparative HPLC procedure, using stepwise increased pH-values (pH 8–12.5, borate buffer) as an eluent, was developed for the fractionation of dissolved HS (up to 7 fractions of different amount). The fractions obtained by this MAC procedure from selected aquatic HS samples were different in their Cu(II) complexation capacity, absorbance ratio E265 nm/E365 nm and Fourier transform infrared spectra. Received: 14 June 1999 / Revised: 6 August 1999 / Accepted: 10 August 1999  相似文献   

4.
The chromatographic fractionation of aquatic humic substances (HS) onto iron(III)-coated cellulose (Cell-Fe(III)) as a metal-loaded adsorbent is described, analogously to the separation principle of the well-established metal affinity chromatography (MAC). For that purpose the sorption of HS from different aquatic origin on that collector was characterized by their kinetics and equilibrium distribution coefficients Kd. Based on Kd values of 103 to 104,mL/g, and fast sorption kinetics a preparative HPLC procedure, using stepwise increased pH-values (pH 8–12.5, borate buffer) as an eluent, was developed for the fractionation of dissolved HS (up to 7 fractions of different amount). The fractions obtained by this MAC procedure from selected aquatic HS samples were different in their Cu(II) complexation capacity, absorbance ratio E265 nm/E365 nm and Fourier transform infrared spectra. Received: 14 June 1999 / Revised: 6 August 1999 / Accepted: 10 August 1999  相似文献   

5.
The analytical fractionation of aquatic humic substances (HS) by means of immobilized metal-chelate affinity chromatography (IMAC) on metal-loaded chelating ion exchangers is described. The cellulose HYPHAN, loaded with different trivalent ions, and the chelate exchanger Chelex 100, loaded to 90% of its capacity with Fe(III), were used. The cellulose HYPHAN, loaded with 2% Fe(III), resulted in HS distribution coefficients Kd of up to 103.7 mL/g at pH 4.0 continuously decreasing down to 101.5 at pH 12, which were appropriate for HS fractionation by a pH-depending chromatographic procedure. Similar distribution coefficients Kd were obtained for HS sorption onto Fe(III)-loaded Chelex 100. On the basis of Fe-loaded HYPHAN both, a low-pressure and high-pressure IMAC technique, were developed for the fractionation of dissolved HS applying a buffer-based pH gradient for their gradual elution between pH 4.0 and 12.0. By coupling the Chelex 100 column under high-pressure conditions with an inductively coupled plasma mass spectrometer an on-line characterization of HS metal species could be achieved. Using these fractionation procedures a number of reference HS were characterized. Accordingly, the HA (humic acids) and FA (fulvic acids) studied could be discriminated into up to 6 fractions by applying cellulose HYPHAN, significantly differing in their Cu(II) complexation capacity but hardly in their substructures assessed by conventional FTIR. In the case of using Chelex 100 exchanger resin two major UV active HS fractions were obtained, which significantly differ in their complexation properties for Cu(II) and Pb(II), respectively.  相似文献   

6.
The influence of structural features of tropical river humic substances (HS) on their capability to reduce mercury(II) in aqueous solutions was studied. The HS investigated were conventionally isolated from Rio Negro water-Amazonas State/Brazil by means of the collector XAD 8. In addition, the isolated HS were on-line fractionated by tangential-flow multistage ultrafiltration (nominal molecular-weight cut-offs: 100, 50, 30, 10, 5 kDa) and characterized by potentiometry and UV/VIS spectroscopy. The reduction of Hg(II) ions to elemental Hg by size-fractions of Rio Negro HS was assessed by cold-vapor AAS (CVAAS). UV/VIS spectrometry revealed that the fractions of high molecular-size (F1>100 kDa and F2: 50-100 kDa) have a higher aromaticity compared to the fractions of small molecular-size (F5: 5-10 kDa, F6: <5 kDa). In contrast, the potentiometric study showed different concentration of functional groups in the studied HS fractions. The reduction of Hg(II) by aquatic HS fractions at pH 5 proceeded in two steps (I, II) of slow first order kinetics (t1/2 of I: 160 min, t1/2 of II: 300 min) weakly influenced by the molecular-size, in contrast to the differing degree of Hg(II) reduction (F5>F2>>F1>F3>F4>>F6). Accordingly, Hg(II) ions were preferably reduced by HS molecules having a relatively high ratio of phenolic/carboxylic groups and a small concentration of sulfur. From these results a complex ‘competition’ between reduction and complexation of mercury(II) by aquatic HS occurring in tropical rivers such as the Rio Negro can be suggested.  相似文献   

7.
Molecular weight (MW) fractionation of Suwannee River fulvic acid (SRFA) and purified Aldrich humic acid (PAHA) by adsorption onto kaolinite and hematite was investigated in equilibrium and rate experiments with a size-exclusion chromatography system using ultraviolet (UV) light detection. The extent of adsorptive fractionation based on UV detection was positively correlated with the percent carbon adsorption for both humic substances (HS), although the specific fractionation pattern observed depended on the particular HS and mineral used. Higher MW fractions of SRFA, an aquatic HS, were preferentially adsorbed to both kaolinite and hematite whereas the fractionation trends for PAHA, a terrestrial peat HS, differed for the two minerals. The contrasting fractionation patterns for SRFA versus PAHA can be explained reasonably well by the different structural trends that occur in their respective MW fractions and the underlying adsorption processes. Rate studies of adsorptive fractionation revealed an initial rapid uptake of smaller HS molecules by the mineral surfaces, followed by their replacement at the surface by a much slower uptake of the larger HS molecules present in aqueous solution.  相似文献   

8.
Two-dimensional phase sensitive C,H correlation spectra were successfully applied to the quantification of carbohydrate substructures in aquatic humic substance (HS) fractions obtained by tangential flow multistage ultrafiltration (TFMSTUF) of a selected bog water HS (HO13, German Research Program DFG-ROSIG) as well as a river HS (Suwannee River Fulvic Acid Reference of the International Humic Substances Society, IHSS). It turns out that after size fractionation the HS samples give very well resolved C,H-correlation spectra which offer a great potential for substructure quantification. Details of the combined substructure quantification technique, novel in HS characterization, are presented. The results of the combined procedure point out that carbohydrate moieties predominantly occur in higher molecular mass fractions (> 10 kDa) of isolated HS.  相似文献   

9.
Two-dimensional phase sensitive C,H correlation spectra were successfully applied to the quantification of carbohydrate substructures in aquatic humic substance (HS) fractions obtained by tangential flow multistage ultrafiltration (TFMSTUF) of a selected bog water HS (HO13, German Research Program DFG-ROSIG) as well as a river HS (Suwannee River Fulvic Acid Reference of the International Humic Substances Society, IHSS). It turns out that after size fractionation the HS samples give very well resolved C,H-correlation spectra which offer a great potential for substructure quantification. Details of the combined substructure quantification technique, novel in HS characterization, are presented. The results of the combined procedure point out that carbohydrate moieties predominantly occur in higher molecular mass fractions (> 10 kDa) of isolated HS.  相似文献   

10.
This study exhibits that size fractionation of humic substances (HS) and their metal complexes by ultrafiltration is an efficient procedure for simultaneous determination of stability constants. Using sequential-stage ultrafiltration and a radiotracer technique the HS–Cu and HS–Zn complexes studied can gently be size-fractionated and their free metal fractions simply be discriminated. The conditional stability constants Ki obtained for size fractions of these HS metal complexes exhibit a clear molecular size dependence. Accordingly, the highest Ki values (6.6 for Zn and 6.4 for Cu) are found in the HS fractions of >105 kDa. Moreover, the overall stability constants K found for Cu (log K=5.5) and Zn complexes (log K=4.5) of the aquatic HS complexes studied are quite comparable to those reported in the literature.  相似文献   

11.
Summary An ion-exchange procedure has been developed for the analytical fractionation of metals (e.g. Al, Co, Cu, Fe, Mn, Ni, Pb, Zn) forming labile/inert complexes with aquatic humic substances (HS) isolated (XAD 2, XAD 8, ultrafiltration) from bog, forest, ground and lake water. Using 1-(2-hydroxyphenylazo)-2-naphthol groups immobilized on cellulose (Cellulose HYPHAN) as chelating collector (batch and column procedure, resp.) for reactive metal fractions in dissolved HS, the kinetics and the degree of separation (referred to the total metal content) serve for the operational characterization of the metal lability. According to the separation kinetics (96 h), mostly the reactivity order Mn>Zn>Co>Pb>Ni>CuAl>Fe is observed for the above metals in HS, resulting in recoveries of >98% for Mn and Zn, but strongly varying for the other metals (e.g., 44–95% Cu, 18–84% Fe). By means of cellulose HYPHAN four metal fractions (e.g. Cu) can be distinguished kinetically: (a) about 50% of Cu freshly complexed with HS are directly exchanged (2nd order kinetics, k=0.275 1 · mol–1 · s–1) followed by (b) a less labile fraction (20–30%) of 1st to 2nd order exchange; (c) a hardly reactive fraction (5–10%) revealing uniform half times t1/2 of 25 h closes the Cu exchange from HS. Moreover the Cu fraction (d), being exchange-inert in HS, amounts to 5–10% and increases by slow transformation processes of the formed HS/Cu species.  相似文献   

12.
The lability/inertness of heavy metals bound in aquatic humic substances (HS) has been characterized by means of ligand exchange with cellulose-immobilized triethylenetetramine-pentaacetic acid (TETPA) applying a flow system. On the basis of high metal distribution coefficients, Kd of 103 to 104 (ml/g) on cellulose TETPA even in slightly acidic HS solutions, labile and inert metal fractions in HS are characterized by their different kinetics and degree of phase exchange in small TETPA columns. For traces of metals bound to dissolved HS, the lability order Cd Mn(II)>Zn>Pb>Co>Ni>Cu is revealed. Systematic variation of environmentally relevant parameters shows the strong influence of the pH value and the ratio of metal loading/complexing capacity on the metal lability in HS. Surprisingly, in the case of freshly formed HS/Ni and HS/Cu complexes, slow transformation processes occur which lower their initial lability by one order of magnitude and supposedly increase their thermodynamic stability.Dedicated to Prof. Dr. F. Huber, Department of Chemistry, University of Dortmund, on the occasion of his 65th birthdayOn leave from Department of Analytical Chemistry, Institute of Chemistry, UNESP, Campus de Araraquara, CEP 14800-900, C. P. 355-Araraquara, SP, Brasil  相似文献   

13.
Two samples of cellulose (molecular weight 2.97 × 105 and 1.25 × 105) were transformed into carbanilates (CTC) which were then fractionated by the elution method at a constant composition of the acetone-water elution mixture with the column temperature gradually increasing from ?30°C to 30°C, and by the GPC method in acetone and tetrahydrofuran. Tetrahydrofuran appeared to be a more suitable solvent. The molecular weights of fractions obtained by the elution fractionation were determined by the light-scattering method in tetrahydrofuran. The width of fractions was determined by the GPC method (average M w/M n = 1.37); the [η] values and the Mark-Houwink constants (K = 5.3 × 10-3, a = 0.84) for tetrahydrofuran at 25°C were determined. The calibration curve for the GP method was constructed by means of the fractions thus obtained; it was demonstrated that the universal calibration curve according to Benoit can also be used. It was demonstrated that the molecular weight distribution of cellulose can be conveniently determined by conversion into CTC followed either by the elution fractionation (for preparative purposes) or by fractionation by the GPC method (for analytical purposes).  相似文献   

14.
The analytical fractionation of aquatic humic substances (HS) by means of immobilized metal-chelate affinity chromatography (IMAC) on metal-loaded chelating ion exchangers is described. The cellulose HYPHAN, loaded with different trivalent ions, and the chelate exchanger Chelex 100, loaded to 90% of its capacity with Fe(III), were used. The cellulose HYPHAN, loaded with 2% Fe(III), resulted in HS distribution coefficients Kd of up to 10(3.7) mL/g at pH 4.0 continuously decreasing down to 10(1.5) at pH 12, which were appropriate for HS fractionation by a pH-depending chromatographic procedure. Similar distribution coefficients Kd were obtained for HS sorption onto Fe(III)-loaded Chelex 100. On the basis of Fe-loaded HYPHAN both, a low-pressure and high-pressure IMAC technique, were developed for the fractionation of dissolved HS applying a buffer-based pH gradient for their gradual elution between pH 4.0 and 12.0. By coupling the Chelex 100 column under high-pressure conditions with an inductively coupled plasma mass spectrometer an on-line characterization of HS metal species could be achieved. Using these fractionation procedures a number of reference HS were characterized. Accordingly, the HA (humic acids) and FA (fulvic acids) studied could be discriminated into up to 6 fractions by applying cellulose HYPHAN, significantly differing in their Cu(II) complexation capacity but hardly in their substructures assessed by conventional FTIR. In the case of using Chelex 100 exchanger resin two major UV active HS fractions were obtained, which significantly differ in their complexation properties for Cu(II) and Pb(II), respectively.  相似文献   

15.
Abstract

Humic substances (HS) play a key role in aquatic and terrestrial ecosystems. The understanding of the ecological functionalities of HS is based on the analysis of their properties, which is normally a very time-consuming procedure. Therefore we tested the possibility to apply the partial least squares regression (PLSR) method in connection with the mid infrared Fourier transform (FTIR) spectra of a series of soil humic substances for the prediction of different HS properties. The results with humic acid (HA) and fulvic acid (FA) fractions of soil HS from different environments show the possibility to predict several properties of an unknown soil HA with satisfying reliability above all the elemental composition.  相似文献   

16.
During this work, size fractionation technique “ultra filtration” is used in physical speciation of thorium in organic rich groundwater. Laboratory simulated experiments were carried out to study the physical speciation of thorium in aquatic environment having elevated level of dissolved humus material classified as dissolved organic carbon (DOC). Samples were collected from organic rich environment having DOC in the range of 50–60 µg mL?1. Th(IV) ions are extremely particle reactive having K d value of the order of 105–6, hence to avoid adsorption on suspended particulate matter, spiking of the solution with Th(NO3)4 was carried out in ground water samples after filtering through 450 nm pore size using suction filtration. Particles in dissolved state (colloids) ranging between <450 and >220 nm were separated using suction filtration assembly having a membrane with a pore diameter of 220 nm. Thereafter, solution was sequentially passed through the ultra-filtration membranes having pore diameters of 14 nm [300 k NMWL (nominal molecular weight limit)], 3.1 nm (50 k NMWL), 2.2 nm (30 k NMWL), 1.6 nm (10 k NMWL) and 1.1 nm (0.5 k NMWL) by using “Stirred Ultra-filtration Cells”, operating in concentration mode. Thorium has only one stable oxidation state i.e. IV, under all redox conditions in natural waters and therefore, its speciation is dominated by its interaction with various fractions of DOC. Experimental results show 50–60 % of the spiked Th is in association with fraction enriched with particles of 10 k NMWL (1.6 nm) followed by fraction enriched with particle of 0.5 k NMWL and <220 nm.  相似文献   

17.
Summary The humic material extracted from one of the Gorleben groundwaters is separated into humic and fulvic acids, and characterized, together with a commercial humic acid from Aldrich Co., for their chemical composition, size distribution, proton exchange capacity and spectroscopic characteristics. The results are compared with one another and with the literature data of other humic acids. The humic acid is fractionated by gel permeation chromatography into different size groups and the fractions are subjected to IR and 1H-NMR spectroscopy. The high molecular weight fractions (>70000 Dalton) are poor in carboxylic groups, whereas the major fractions (approx. 10000 Dalton) contain organic acids of large molecular entities.  相似文献   

18.
The use of three different separation techniques, ultrafiltration (UF), high performance size exclusion chromatography (HPSEC) and asymmetrical flow field-flow fractionation (AsFlFFF), for the characterization of a compost leachate is described. The possible interaction of about 30 elements with different size fractions of humic substances (HS) has been investigated coupling these separation techniques with UV-vis absorption spectrophotometry and inductively coupled plasma-mass spectrometry (ICP-MS) as detection techniques. The organic matter is constituted by a polydisperse mixture of humic substances ranging from low molecular weights (around 1kDa) to significantly larger entities. Elements can be classified into three main groups with regard to their interaction with HS. The first group is constituted by primarily the monovalent alkaline metal ions and anionic species like B, W, Mo, As existing as oxyanions all being not significantly associated to HS. The second group consists of elements that are at least partly associated to a smaller HS size fraction (such as Ni, Cu, Cr and Co). A third group of mainly tri- and tetravalent metal ions like Al, Fe, the lanthanides, Sn and Th are rather associated to larger-sized HS fractions. The three separation techniques provide a fairly consistent size classification for most of the metal ions, even though slight disagreements were observed. The number-average molecular weight (Mn), the weight-average molecular weight (Mw) and the polydispersity (rho) parameters have been calculated both from AsFlFFF and HPSEC experiments and compared for HS and some metal-HS species. Differences in values can be partly explained by an overloading effect observed in the AsFlFFF experiments induced by electrostatic repulsion effects in the low ionic strength, high pH carrier solution. Size information obtained from ultrafiltration is not as resolved as for the other methods. Molecular weight cut-offs (MWCO) of the individual filter membranes refer to globular proteins and molecular weight information may therefore, deviate from that given by the other methods after calibration with polystyrene sulfonate (PSS) standards.  相似文献   

19.
Capillary sodium dodecyl sulfate (SDS)-DALT electrophoresis (SDS-DALT-CE) refers to CE separation of proteins based on their size; DALT is the abbreviation for Dalton, the unit used to describe molecular weight. In this work, seven proteins from 18 to 116 kDa were denatured by SDS, labeled by 3-(2-furoyl) quinoline-2-carboxaldehyde, separated by SDS-DALT-CE in polyethylene oxide sieving matrix, and detected by laser-induced fluorescence (LIF) in a sheath flow cuvette. This method was combined with detergent differential fractionation, which is a protein fractionation method using a series of detergent-containing buffers to sequentially extract protein fractions from cells, to analyze the proteins in HT29 human colon adenocarcinoma cells. In addition, on-column labeling was demonstrated for protein analysis by SDS-DALT-CE with LIF, and applied to analysis of proteins in a single HT29 cancer cell. Most proteins had molecular masses from 10 to 120 kDa. Similar protein profiles were obtained for single cells and protein extract of a large cell population.  相似文献   

20.
To understand the influence of formaldehyde/urea (F/U) mole ratio on the properties of urea–formaldehyde (UF) resins, this study investigated hardness of cured UF resins with different F/U mole ratios using a nanoindentation method. The traditional Brinell hardness (HB) method was also used for comparison. The HB of cured UF resin films with different F/U mole ratios was determined after exposing the films to different post-curing temperatures. The nanoindentation method was employed for these films to measure Meyer hardness (HM) and reduced modulus (Er) which have been used to calculate the elastic modulus (Es) of cured UF resins. As the F/U mole ratio decreased, the HB decreased continuously, indicating a less rigid network structure in low F/U mole ratio UF resins. The higher the post-curing temperature, the greater the value of HB. The HM value also showed a similar trend as a function of F/U mole ratio. However, the Er and Es did not show a consistent trend as exhibited by HM and HB. Both HM and Er showed much greater variation in the coefficient of variation (COV) at lower F/U mole ratios 1.0 and 1.2, indicating a more heterogeneous composition of these resins. Linear relationships between HM and Er indicate that heterogeneity of the surface composition of samples contributes greatly to variations in the measured values. This variability is discussed in terms of crystal structures present in the cured UF resins of low F/U mole ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号