首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A direct dynamics method is employed to study the hydrogen abstraction reaction of CH3CH2F+Cl. Three distinct transition states are located, one for -H abstraction and two for β-H abstraction. The potential energy surface (PES) information is obtained at the QCISD(T)/6-311+G(3df,2p)//MP2/6-311G(d,p), CCSD(T)/6-311+G(3df,2p)//MP2/6-311G(d,p) and G2//MP2/6-311G(d,p) level. Based on the QCISD(T)/6-311+G(3df,2p)//MP2/6-311G(d,p) results, the rate constants of the three reaction channels are evaluated by using the canonical variational transition state theory (CVT) with small-curvature tunneling (SCT) contributions over the temperature range of 220–2800 K. The calculated results indicate that -H abstraction dominates the total reaction almost over the whole temperature range.  相似文献   

2.
Ab initio and density functional theory (DFT) calculations predict that intramolecular homolytic substitution by alkyl radicals at the sulfur atom in sulfinates proceeds through a smooth transition state in which the attacking and leaving radicals adopt a near collinear arrangement. When forming a five-membered ring and the leaving radical is methyl, G3(MP2)-RAD//ROBHandHLYP/6-311++G(d,p) calculations predict that this reaction proceeds with an activation energy (ΔE(1)(?)) of 43.2 kJ mol(-1). ROBHandHLYP/6-311++G(d,p) calculations suggest that the formation of five-membered rings through intramolecular homolytic substitution by aryl radicals at the sulfur atom in sulfinates and sulfinamides, with expulsion of phenyl radicals, proceeds with the involvement of hypervalent intermediates. These intermediates further dissociate to the observed products, with overall energy barriers of 45-68 kJ mol(-1), depending on the system of interest. In each case, homolytic addition to the phenyl group competes with substitution, with calculated barriers of 51-78 kJ mol(-1). This computational study complements and provides insight into previous experimental observations.  相似文献   

3.
The potential energy surface (PES) for dissociation of aniline ion was determined using density functional theory molecular orbital calculations at the B3LYP/6-311+G(3df,2p)//B3LYP/6-31G(d) level. On the basis of the PES obtained, kinetic analysis was performed by Rice–Ramsperger–Kassel–Marcus (RRKM) calculations. The RRKM dissociation rate constants agreed well with previous experimental data. The most favorable channel was formation of the cyclopentadiene ion by loss of HNC, occurring through consecutive ring opening and re-closure to a five-membered ring. Loss of H could compete with the HNC loss at high energy, which occurred by direct cleavage of an N–H bond or through ring expansion.  相似文献   

4.
The reaction mechanism of OBrO with OH has been studied using the B3LYP/6-311 G(d,p) and the high-level electron-correlation CCSD(T)/6-311 G(d,p) at single-point. The results show that the title reaction could probably proceed by four possible schemes, generating HOBr O2, HBr O3, BrO HO2 and HOBrO2 products, respectively. The main channel is the one to yield HOBr O2. The whole reaction involves the formation of three-membered, four-membered and five-membered rings, followed by the complicated processes of association,H-shift, Br-shift and dissociation. All routes are exothermic.  相似文献   

5.
An extensive quantum chemical study of the potential energy surface (PES) for all possible isomerization and dissociation reactions of CH3CN is reported at the DFT (B3LYP/6-311++G(d,p)) and CCSD(T)/ cc-pVTZ//B3LYP/6-311++G(d,p) levels of theory. The pathways around the equilibrium structures can be discovered by the scaled hypersphere search (SHS) method, which enables us to make a global analysis of the potential energy surface for a given chemical composition in combination with a downhill-walk algorithm. Seventeen equilibrium structures and 59 interconversion transition states have been found on the singlet PES. The four lowest lying isomers with thermodynamic stability are also kinetically stable with the lowest conversion barriers of 49.69-101.53 kcal/mol at the CCSD(T)/cc-pVTZ//B3LYP/6-311++G(d,p) level, whereas three-membered-ring isomers c-CH2NCH, c-CH2CNH, and c-CHNHCH can be considered as metastable intermediates which can further convert into the low-lying chain-like isomers and higher lying acyclic isomers with the lowest conversion energies of 21.70-59.99 kcal/mol. Thirteen available dissociation channels depending on the different initial isomers have been identified. A prediction can be made for the possible mechanism explaining the migration of a hydrogen atom in competition with the CC bond dissociation. Several new energetically accessible pathways are found to be responsible for the migration of the hydrogen atom. The present results demonstrate that the SHS method is an efficient and powerful technique for global mapping of reaction pathways on PESs.  相似文献   

6.
The gallium chloride (GaCl(3))-catalyzed ring-closing metathesis reaction mechanism of N-2,3-butadienyl-2-propynyl-1-amine has been studied at the Becke three-parameter hybrid functional combined with Lee-Yang-Parr correlation functional (B3LYP)/6-31G(d), B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p)//B3LYP/ 6-31G(d) and the second-order M?ller-Plesset perturbation (MP2)/6-311++G(d,p)//B3LYP/6-31+G(d,p) levels. It was found that the final metathesis product can be yielded via a three-membered or four-membered ring mechanism. The three-membered ring pathway is favorable due to its low energy barrier at the rate determining step. The whole reaction is stepwise and strongly exothermic.  相似文献   

7.
The stability and isomerizations of CH3SO isomers have been investigated at B3LYP/6-311G(d,p), MP2/6-311G(d,p), QCISD/6-311G(d,p), and CCSD(T)/6-311G(d,p) levels. Geometries of isomers and transition states (TS) have been optimized at the B3LYP/6-311G(d, p) level. Vibration analysis and the intrinsic reaction coordinate (IRC) calculated at the same level have been applied to validate the connection of the stationary points. The four different methods give similar results: 11 isomers and 9 isomerization channels were found. CH3SO and CH2(S)OH are the most stable species among the 11 isomers. Furthermore, the breakage and formation of the chemical bonds in isomerization reactions have been discussed by the topological analysis method of electronic density. The "energy transition state (ETS)" and the "structure transition state (STS)" of all the isomerizations have been found. The topological analysis shows that the relative positions of ETS and STS are determined by reaction energy. The nonplanar four-member ring structure transition state (STS), which was first found in this paper, extended the concept of ring STS.  相似文献   

8.
在MP2/6-311++G(d,p)和QCISD(t)/6-311++G(3df,2p)(单点)水平下计算得到9个异构体和10个过渡态的HAsS2体系势能面.异构体cis-HSAsS(E1)的能量最低,其次是trans-HSAsS(E2)、具有AsSS三元环的立体HAs(S)S(Cs,E3)和HAs(S)S(C2v,E4)结构的异构体,能量分别比cis-HSAsS高1.46,60.78和93.63kJ/mol.根据体系的势能面,异构体E1,E2,E3和E4具有一定的动力学稳定性.AsH和S2第一步反应产物将会异构化为具有较高动力学稳定性的异构体E3,而SH和AsS第一步反应产物将会异构化为E1.计算结果与HNO2,HNS2,HPO2,HPS2和HAsO2等价电子相同的分子的势能面进行了比较.  相似文献   

9.
The NCO+C(2)H(2) reaction has been considered as a prototype for understanding the chemical reactivity of the isocyanate radical towards unsaturated hydrocarbons in fuel-rich combustion. It has also been proposed to provide an effective route for formation of oxazole-containing compounds in organic synthesis, and might have potential applications in interstellar processes. Unfortunately, this reaction has met mechanistic controversy both between experiments and between experiments and theoretical calculations. In this paper, detailed theoretical investigations at the Becke's three parameter Lee-Yang-Parr-B3LYP6-31G(d), B3LYP6-311++G(d,p), quadratic configuration interaction with single and double excitations QCISD6-31G(d), and Gaussian-3 levels are performed for the NCO+C(2)H(2) reaction, covering various entrance, isomerization, and decomposition channels. Also, the highly cost-expensive coupled-cluster theory including single and double excitations and perturbative inclusion of triple excitations CCSD(T)/aug-cc-pVTZ single-point energy calculation is performed for the geometries obtained at the Becke's three parameter Lee-Yang-Parr-B3LYP6-311++G(d,p) level. A previously ignored yet most favorable channel via a four-membered ring intermediate with allyl radical character is found. However, formation of P(3) H+HCCNCO and the five-membered ring channel predicted by previous experimental and theoretical studies is kinetically much less competitive. With the new channel, master equation rate constant calculations over a wide range of temperatures (298-1500 K) and pressures (10-560 Torr) show that the predicted total rate constants exhibit a positive-temperature dependence and no distinct pressure dependence effect. This is in qualitative agreement with available experimental results. Under the experimental conditions, the predicted values are about 50% lower than the latest experimental results. Also, the branching ratio variations of the fragments P(2) HCN+HCCO and P(5) OCCHCN+H as well as the intermediates L1 HCHCNCO, r4 cCHCHNC-O, and L5 NCHCHCO are discussed with respect to the temperature and pressure. Future experimental reinvestigations are strongly desired to test the newly predicted channel for the model NCO+C(2)H(2) reaction. Implications of the present results in various fields are discussed.  相似文献   

10.
HAsO~2异构体结构、相对稳定性与体系势能面   总被引:2,自引:0,他引:2  
在MP2/6-311++G(d,p)和QCISD(T)/6-311++G(3df,2p)(单点)水平下计算得到了包括9个异构体和10个过滤态的HAsO~2体系势能面。在势能面上,异构体cis-HOAsO(E1)的能量是最低的,其次是trans-HOAsO(E2)和HAsO(O)(C~2~V,E3),能量分别比cis-HOAsO高13.15和192.74kJ/mol。根据体系的势能面,异构体E1,E3及cis-HOOAs(E6),trans-HOOAs(E5)具有一定的动力学稳定性,在实验中应该可以观测到。AsH和O~2反应的第一步产物将会异构化为具有较高动力学稳定性的异构体E3;而OH和AsO反应可直接生成E1。计算结果与HPO~2,HPS~2,HNO~2,HNS~2等价电子相同的分子的势能面进行了比较。  相似文献   

11.
Master equation calculations were carried out to simulate the production of hydroxyl free radicals initiated by the reaction of acetyl free radicals (CH3(C=O).) with molecular oxygen. In particular, the competition between the unimolecular reactions and bimolecular reactions of vibrationally excited intermediates was modeled by using a single master equation. The vibrationally excited intermediates (isomers of acetylperoxyl radicals) result from the initial reaction of acetyl free radical with O2. The bimolecular reactions were modeled using a novel pseudo-first-order microcanonical rate constant approach. Stationary points on the multi-well, multi-channel potential energy surface (PES) were calculated at the DFT(B3LYP)/6-311G(2df,p) level of theory. Some additional calculations were carried out at the CASPT2(7,5)/6-31G(d) level of theory to investigate barrierless reactions and other features of the PES. The master equation simulations are in excellent agreement with the experimental OH yields measured in N2 or He buffer gas near 300 K, but they do not explain a recent report that the OH yields are independent of pressure in nearly pure O2 buffer gas.  相似文献   

12.
The mechanisms for the reaction of CH3S with NO2 are investigated at the QCISD(T)/6‐311++G(d,p)//B3LYP/6‐311++G(d,p) on both single and triple potential energy surfaces (PESs). The geometries, vibrational frequencies, and zero‐point energy (ZPE) correction of all stationary points involved in the title reaction are calculated at the B3LYP/6‐311++G(d,p) level. More accurate energies are obtained at the QCISD(T)/6‐311++G(d,p). The results show that 5 intermediates and 14 transition states are found. The reaction is more predominant on the single PES, while it is negligible on the triple PES. Without any barrier height for the whole process, the main channel of the reaction is to form CH3SONO and then dissociate to CH3SO+NO. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

13.
The reaction mechanism of CH2F radical with HNCO was investigated by density functional theory (DFT)at the B3LYP/6-311++G(d,p) level. The geometries of the reactants, the intermediates, the transition states and the products were optimized. The transition states were verified through the vibration analysis.The relative energies were calculated at the QCISD(T)/6-311++G**//B3LYP/6-311++G(d,p) level. Seven feasible reaction pathways of the reaction were studied. The results indicate that the pathway (5) is the most favorable to occur, so it is the main pathway of the reaction.  相似文献   

14.
Diode infrared laser absorption spectroscopy was used to measure the rate constant (k(1)) of the CN + CS(2) reaction for the first time. k(1) was determined to be substantially pressure dependent with a value k(1) = (7.1 ± 0.2 to 41.9 ± 2.9) × 10(-12) cm(3) molecule(-1) s(-1) over 2-40 Torr at 298 K. The potential energy surface (PES) of the reaction was calculated using an ab initio method at B3LYP/6-311++G(d, p)//CCSD(T)/6-311++G(d, p) level of theory. Both experimental and computational results suggest that collision stabilization of the adduct NCSCS may dominate the reaction. The rate constant of the CN + SO(2) reaction was measured to be very slow with an upper limit of k(2) ≤ 3.1 × 10(-14) cm(3) molecule(-1) s(-1), in disagreement with an earlier reported measurement. The PES of this reaction reveals an entrance barrier against formation of the low energy adduct NCOSO, in agreement with the experimental result.  相似文献   

15.
采用MP2(Full)/6-311G(d,p)和B3LYP/6-311G(d,p)找到了反应Cl+CH2SH→HCl+CH2S的两个可能的反应通道, 得到了各反应通道的反应物、中间体、过渡态和产物的优化构型、谐振频率. 对反应进程中若干关键点进行了电子密度拓扑分析, 讨论了反应进程中键的断裂、生成和化学键的变化规律, 找到了该反应的结构过渡区(结构过渡态)和能量过渡态, 发现了反应热与结构过渡区之间的关系.  相似文献   

16.
Ab initio calculations at the MP2(full)/6-31++G**, RI-MP2(full)/6-31++G**, and RI-MP2(full)/6-311++G(2d,2p) levels of theory demonstrate important synergic effects between two noncovalent interactions that involve aromatic rings, that is, cation-pi and pi-pi interactions. The presence of a cation interacting with the pi cloud of an aromatic ring favors the face-to-face stacking interaction with additional aromatic rings. This effect is extended in the space up to five stacked aromatic rings.  相似文献   

17.
在B3LYP/6-311++G(d,p)水平上研究了HOSO+NO的反应机理. 优化得到了反应势能面上各驻点的几何构型, 通过内禀反应坐标(IRC)确认了反应物、中间体、过渡态和产物的相关性. 在CCSD(T)/6-311++G(d,p)水平上对计算得到的构型进行了能量校正. 应用经典过渡态理论(TST)与变分过渡态理论(CVT), 并结合小曲率隧道(SCT)效应模型校正的方法计算了标题反应在200-3000 K温度范围内的速率常数kTST、kCVT和kCVT/SCT. 计算结果表明: HOSO+NO反应在单重态和三重态条件下均可发生, 其中单重态反应为主反应通道, HNO+SO2为主产物. 并利用电子密度拓扑分析方法研究主反应通道反应过程中的化学键变化.  相似文献   

18.
A detailed computational study is performed on the singlet potential energy surface (PES) for possible isomerization and dissociation reactions of CH(3)CHO at the DFT (B3LYP/6-311++G(d,p)) and CCSD(T)/cc-pVTZ//B3LYP/6-311++G(d,p) levels. The pathways around the equilibrium structures can be discovered by the scaled hypersphere search (SHS) method, which enables us to make a global analysis of the PES for a given chemical composition. Fourteen isomers inclusive of 11 single-molecules and three "non-stabilized" oxygen-based ylides, 5 energetically favored complexes, and 79 interconversion transition states have been found on the singlet PES. Four lowest lying isomers with thermodynamic stability are also kinetically stable with respect to metastable intermediates. It was revealed that vinyl alcohols, which could be generated by the tautomerization of acetaldehyde, could undergo dissociation to form acetylene and water. In addition, recombination channels between some fragments, such as H(2)CO + (1)CH(2) and (1)CHOH + (1)CH(2), are energetically accessible via collision complex or oxygen-based ylides. Most of available unimolecular decompositions are found to be responsible for favorable hydrogen abstraction processes.  相似文献   

19.
The GIAO (Gauge Including Atomic Orbitals) DFT (Density Functional Theory) method is applied at the B3LYP/6-31+G(d,p)//B3LYP/6-31+G(d), B3LYP/6-311++G(d,p)//B3LYP/6-31+G(d), B3LYP/6-311+G (2d,p)//B3LYP/6-31+G(d) and B3LYP/6-311++G(d,p)//B3LYP/6-311++G(d,p) levels of theory for the calculation of proton and carbon chemicals shifts and coupling constants for 25 nitro-substituted five-membered heterocycles. Difference (1D NOE) spectra in combination with long-range gHMBC experiments were used as tools for the structural elucidation of nitro-substituted five-membered heterocycles. The assigned NMR data (chemical shifts and coupling constants) for all compounds were found to be in good agreement with theoretical calculations using the GIAO DFT method. The magnitudes of one-bond (1JCH) and long-range (nJCH, n>1) coupling constants were utilized for unambiguous differentiation between regioisomers of nitro-substituted five-membered heterocycles.  相似文献   

20.
Recent theoretical investigations of the radical/π-bond addition between single-ring aromatic hydrocarbons highlight the importance of this category of reactions for the formation of PAH intermediates and soot. The present investigation extends the theory of the radical/π-bond addition reactions to the o-benzyne + cyclic C(5) hydrocarbons systems. The calculations, performed using the uB3LYP/6-311+G(d,p) method, have addressed the possible role of the reaction between o-benzyne and cyclopentadiene in the formation of indene through the fragmentation of the bicyclo intermediate benzonorbornadiene. The complex potential energy surface for the reaction between o-benzyne and cyclopentadienyl radical was also investigated. In this case, the formation of the bicyclo benzonorbornadienyl radical and its subsequent fragmentation to indenyl radical and acetylene is not the main reaction pathway, although it could be relevant at relatively high temperatures. At lower temperatures, the isomerization reactions, which lead to the formation of a variety of multiring compounds, are dominant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号