首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A room temperature ionic liquid (RTIL) modified carbon paste electrode was constructed based on the substitute of paraffin with 1-butyl-3-methyl-imidazolium hexafluorophosphate (BMIMPF6) as binder for carbon paste. Direct electrochemistry and electrocatalytic behaviors of hemoglobin (Hb) entrapped in the sodium alginate (SA) hydrogel film on the surface of this carbon ionic liquid electrode (CILE) were investigated. The presence of IL in the CILE increased the electron transfer rate and provided a biocompatible interface. Hb remained its bioactivity on the surface of CILE and the SA/Hb modified electrode showed a pair of well-defined, quasi-reversible cyclic voltammetric peaks with the apparent standard potential (E0′) at about −0.344 V (vs. SCE) in pH 7.0 Britton–Robinson (B–R) buffer solution, which was attributed to the Hb Fe(III)/Fe(II) redox couple. UV–Vis absorption spectra indicated that heme microenvironment of Hb in SA film was similar to its native status. Hb showed a thin-layer electrochemical behavior in the SA film with the direct electron transfer achieved on CILE without the help of electron mediator. Electrochemical investigation indicated that Hb took place one proton with one electron electrode process and the average surface coverage of Hb in the SA film was 3.2 × 10−10 mol/cm2. The immobilized Hb showed excellent electrocatalytic responses to the reduction of H2O2 and nitrite.  相似文献   

2.
A robust and effective composite film based on gold nanoparticles (GNPs)/room temperature ionic liquid (RTIL)/multi-wall carbon nanotubes (MWNTs) modified glassy carbon (GC) electrode was prepared by a layer-by-layer self-assembly technique. Cytochrome c (Cyt c) was successfully immobilized on the RTIL-nanohybrid film modified GC electrode by electrostatic adsorption. Direct electrochemistry and electrocatalysis of Cyt c were investigated. The results suggested that Cyt c could be tightly adsorbed on the modified electrode. A pair of well-defined quasi-reversible redox peaks of Cyt c was obtained in 0.10 M, pH 7.0 phosphate buffer solution (PBS). RTIL-nanohybrid film showed an obvious promotion for the direct electron transfer between Cyt c and the underlying electrode. The immobilized Cyt c exhibited an excellent electrocatalytic activity towards the reduction of H2O2. The catalysis currents increased linearly to the H2O2 concentration in a wide range of 5.0 × 10−5– 1.15 × 10−3 M. Based on the multilayer film, the third-generation biosensor could be constructed for the determination of H2O2.  相似文献   

3.
Electrochemical reduction of the 4-nitrophenyl diazonium salt in ionic liquid media has been investigated at carbon electrode. The ionic liquid chosen for this study was 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [EMIM][TFSI]. The cyclic voltammetry study demonstrated the possibility of the electrochemical grafting of the nitrophenyl groups onto carbon electrode after the reduction of its corresponding diazonium in ionic liquid. The electrochemical characterization of the modified electrode achieved on ionic liquid displays the presence of the nitrophenyl group at the carbon surface. Moreover, the surface concentration of the attached group obtained in this media was found to be around 1.7 × 10−10 mol cm−2, this value may suggest the possibility of the formation of monolayer. Furthermore, the characterization of the modified electrode in [EMIM][TFSI] showed the conversion of some NO2-phenyl groups to NHOH-phenyl. This observation could indicate the presence of surface interaction between the reduced NO2-phenyl and the ionic liquid cation, thanks to the presence of acidic proton in the ionic liquid cation.  相似文献   

4.
A thionine modified aligned carbon nanotubes (ACNTs) electrode was fabricated and was used to electrochemically determine nitrite. The thionine modified ACNTs electrode exhibited enhanced electrocatalytic behavior to the oxidation of nitrite. The electrochemical mechanism of the thionine/ACNTs electrode towards the oxidation of nitrite was discussed. The thionine modified ACNTs electrode exhibited fast response towards nitrite with a detection limit of 1.12 × 10−6 mol  L−1 and a linear range of 3 × 10−6 – 5 × 10−4 mol  L−1. The proposed method was successfully applied in the detection of nitrite in real samples.  相似文献   

5.
The electrochemiluminescent (ECL) behavior of lucigenin on a multi-wall carbon nanotube/nano-Au modified glassy carbon electrode (MWNT/nano-Au/GCE) was studied in this paper. Compared with the bare GCE, the ECL intensity of lucigenin can be greatly enhanced at MWNT/nano-Au/GCE. Based on the fact that superoxide dimutase (SOD) could obviously inhibit the ECL of lucigenin at MWNT/nano-Au/GCE, a sensitive ECL biosensor for determination of SOD was developed with a wide linear range of 5.0 × 10−8–5.0 × 10−6 mol/L with detection limit of 2.5 × 10−8 mol/L.  相似文献   

6.
New biocomposite materials, based on the incorporation of DNA doped p-aminobenzensulfonic acid, was fabricated by electrochemical method. A carbon fiber microelectrode modified by this thin film was fabricated for selective determination of uric acid (UA) in the presence of a larger amount of ascorbic acid (AA). It was found that the voltammetric oxidation peak separation between UA and AA is about 260 mV at the modified electrode. A linear response of the peak current versus the concentration was found in the range of 8 × 10−7–6 × 10−4 M with correlation coefficient of 0.9991 and the detection limit was 5 × 10−7 M (s/n = 3) at the 5 × 10−4 M AA. The presence of high concentration AA did not interference the determination. The electropolymerized film was characterized by SEM techniques. The modified electrode shows good sensitivity, selectivity and stability.  相似文献   

7.
《Comptes Rendus Chimie》2015,18(4):438-448
A highly sensitive method was investigated for the simultaneous determination of acetaminophen (AC), dopamine (DA), and ascorbic acid (AA) using a PbS nanoparticles Schiff base-modified carbon paste electrode (PSNSB/CPE). Differential pulse voltammetry peak currents of AC, DA and AA increased linearly with their concentrations within the ranges of 3.30 × 10−8–1.58 × 10−4 M, 5.0 × 10−8–1.2 × 10−4 M and 2.50 × 10−6–1.05 × 10−3 M, respectively, and the detection limits for AC, DA and AA were 5.36 × 10−9, 2.45 × 10−9 and 1.86 × 10−8 M, respectively. The peak potentials recorded in a phosphate buffer solution (PBS) of pH 4.6 were 0.672, 0.390, and 0.168 V (vs Ag/AgCl) for AC, DA and AA, respectively. The modified electrode was used for the determination of AC, DA, and AA simultaneously in real and synthetic samples.  相似文献   

8.
The exposure to gamma-irradiation pretreatment increases cell wall permeabilization, resulting in loss of turgor pressure, which led to the increase of extractability of betanin from red beetroot. The degree of extraction of betanin was investigated using gamma irradiation as a pretreatment prior to the solid–liquid extraction process and compared with control beetroot samples. The beetroot subjected to different doses of gamma irradiation (2.5, 5.0, 7.5, 10.0 kGy) and control was dipped in an acetic acid medium (1% v/v) to extract the betanin. The diffusion coefficients for betanin as well as ionic component were estimated considering Fickian diffusion. The results indicated an increase in the diffusion coefficient of betanin (0.302×10−9–0.463×10−9 m2/s) and ionic component (0.248×10−9–0.453×10−9 m2/s) as the dose rate increased (from 2.5 to 10.0 kGy). The degradation constant was found to increase (0.050–0.079 min−1) with an increase gamma-irradiation doses (2.5–10.0 kGy), indicating lower stability of the betanin as compared to control sample at 65 °C.  相似文献   

9.
A novel poly(p-xylenolsulfonephthalein) modified glassy carbon electrode was prepared for the simultaneous determination of ascorbic acid (AA), epinephrine (EP) and uric acid (UA). Cyclic voltammetric, chronoamperometric, and differential pulse voltammetric methods were used to investigate the modified electrode for the electrocatalytic oxidation of EP, AA, and UA in aqueous solutions. The separation of the oxidation peak potentials for AA–EP and EP–UA was about 200 and 130 mV, respectively. The calibration curves obtained for AA, EP, and UA were in the ranges of 10–1343, 2–390, and 0.1–560 μmol L−1, respectively. The detection limits (S/N = 3) were 4, 0.1, and 0.08 μmol L−1 for AA, EP and UA, respectively. The diffusion coefficient and the catalytic rate constant for the oxidation of EP at the modified electrode were calculated as 1.40(±0.10) × 10−4 cm2 s−1 and 1.06 × 103 mol−1 L s−1, respectively. The present method was applied to the determination of EP in pharmaceutical and urine samples, AA in commercially available vitamin C tablet, and EP plus UA in urine samples.  相似文献   

10.
The activity and stability of horseradish peroxidase (HRP) were investigated in a hydrophilic room temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluroborate ([bmim][BF4]) by electrochemical methods. Although no detectable activity exhibited in anhydrous [bmim][BF4], HRP was active in the presence of a small amount of water (4.53%, v/v). And its activity can be improved by immobilization in agarose hydrogel. The immobilized HRP possesses excellent activity at 65 °C. It remained 80.2% of its initial activity after being immersed for 10.5 h in an aqueous mixture of [bmim][BF4] with some hydrogen peroxide (H2O2) under room temperature, implying extremely high stability. Moreover, the immobilized HRP was found to be very sensitive and stable in H2O-containing [bmim][BF4] for the detection of H2O2, with a wide linear range of 6.10 × 10−7 to 1.32 × 10−4 mol l−1 and low detection limit of 1.0 × 10−7 mol l−1.  相似文献   

11.
A novel selective thiocyanate PVC membrane electrode based on bis-bebzoin-semitriethylenetetraamine binuclear copper(II) [Cu(II)2–BBSTA] as neutral carrier is reported, which displays an anti-Hofmeister selectivity sequence in following order: SCN > ClO4 > I >Sal >SO32− >NO3 > H2PO4 > Cl >NO2 > SO42−. The electrode exhibits Nernstian potential linear range to thiocyanate from 1.0 × 10−1 to 9.0 × 10−7 mol/l with a detection limit 7.0 × 10−7 mol/l and a slope of −57.0 mV/decade in pH 5.0 of phosphorate buffer solution at 25 °C. The response mechanism is discussed in view of the AC impedance technique and the UV spectroscopy technique. From comparison of potentiometric response characteristics between the binuclear metallic complex copper(II) [Cu(II)2–BBSTA] and mononuclear copper(II) metallic complex [Cu(II)–BBSDA], an enhanced response towards thiocyanate from the electrode based on binuclear metallic complex copper (II) [Cu(II)2–BBSTA] was observed. The electrode based on binuclear copper(II) compound was used to determine the thiocyanate content in waste water with satisfactory results.  相似文献   

12.
A novel chitosan-carboxylated multiwall carbon nanotube modified glassy carbon electrode (MC/GCE) was developed to investigate the oxidation behavior of nitrite using cyclic voltammetry and differential pulse voltammetry modes. The electrochemical mechanism of the MC/GCE towards nitrite was discussed. The MC/GCE exhibited fast response towards nitrite with a detection limit of 1 × 10−7 mol l−1 and a linear range of 5 × 10−7–1 × 10−4 mol l−1. The possible interference from several common ions was tested. The proposed method was successfully applied in the detection of nitrite in real samples.  相似文献   

13.
The direct electron transfer between hemoglobin (Hb) and the underlying glassy carbon electrode (GCE) can be readily achieved via a high biocompatible composite system based on biopolymer chitosan (CHT) and inorganic CaCO3 nanoparticles (nano-CaCO3). Cyclic voltammetry of Hb-CHT/nano-CaCO3/GCE showed a pair of stable and quasi-reversible peaks for HbFe(III)/Fe(II) redox couple in pH 7.0 buffer. The electrochemical reaction of Hb immobilized in CHT/nano-CaCO3 composite matrix exhibited a surface-controlled process accompanied by electron and proton transfer. The electron transfer rate constant was estimated to be 1.8 s−1. This modified electrode showed a high thermal stability up to 60 °C. The apparent Michaelis–Menten constant was calculated to be 7.5 × 10−4 M, indicating a high catalytic activity of the immobilized Hb toward H2O2. The interaction between Hb and this nano-hybrid material was also investigated using FT-IR and UV–vis spectroscopy, indicating that Hb retained its native structure in this hybrid matrix.  相似文献   

14.
An interesting mode of reactivity of MnO2 nanoparticles modified electrode in the presence of H2O2 is reported. The MnO2 nanoparticles modified electrodes show a bi-direction electrocatalytic ability toward the reduction/oxidation of H2O2. Based on this property, a choline biosensor was fabricated via a direct and facile electrochemical deposition of a biocomposite that was made of chitosan hydrogel, choline oxidase (ChOx) and MnO2 nanoparticles onto a glassy carbon (GC) electrode. The biocomposite is homogeneous and easily prepared and provides a shelter for the enzyme to retain its bioactivity. The results of square wave voltammetry showed that the electrocatalytic reduction currents increased linearly with the increase of choline chloride concentration in the range of 1.0 × 10−5 –2.1 × 10−3 M and no obvious interference from ascorbic acid and uric acid was observed. Good reproducibility and stability were obtained. A possible reaction mechanism was proposed.  相似文献   

15.
The electrochemiluminescent (ECL) behavior of lucigenin on a multiwall carbon nanotubes modified glassy carbon electrode (MWNT/GCE) during anodic scanning was studied. A strong and stable anodic ECL signal was found on MWNT modified electrode, which results from the oxidation reaction between lucigenin and the oxidation production of OH-. The effects of electrode materials, pH and scan rate on the ECL intensity were studied, and the possible ECL mechanism was also proposed. Under the optimized conditions, the ECL intensity was found to be linear with concentration of lucigenin in the range of 5.0 × 10?7–5.0 × 10?6 mol/L with a detection limit of 2.0 × 10?7 mol/L. Superoxide dimutase (SOD) was found to be able to inhibit this ECL system, based on which a sensitive ECL methods for detection of SOD had been established.  相似文献   

16.
A new PVC membrane based strontium(II) ion-selective electrode has been constructed using acetophenone semicarbazone as a neutral carrier. The sensor exhibits a Nerstian response for strontium(II) ion over a wide concentration range 1.0 × 10−2–1.0 × 10−7 M with the slope of 29.4 mV/per decade. The limit of detection was 2.7 × 10−8 M. It was relatively fast response time (<10 s for concentration ⩾1.0 × 10−3 and <15 s for concentration of ⩾1.0 × 10−6 M) and can be used for 8 months without any considerable divergence in potentials. The proposed sensor revealed relatively good selectivity and high sensitivity for strontium(II) over a mono, di, trivalent cation and can be used in a pH range of 2.5–10.5. It was also successfully used as an indicator electrode in potentiometer titration and in the analysis of concentration in various real samples.  相似文献   

17.
In this paper, we compared the use of gelatin-functionalized carbon nanotubes (CNTs) as substrates for Hemoglobin (Hb) immobilization and as electrodes for electrochemical reduction of the absorbed Hb. The non-covalently gelatin-functionalized CNTs possessed an improved solubility in aqueous solution and may have an enhanced biocompatibility with Hb. The characteristics of Hb/gelatin-CNTs composite films were studied by using UV–vis spectroscopy, FTIR spectroscopy and electrochemical methods. The immobilized Hb showed a couple of quasi-reversible redox peaks with a formal potential of −0.35 V (vs. SCE) in 0.10 M pH 7.0 phosphate buffer solution (PBS). The surface concentration of electroactive Hb immobilized on gelatin-CNT/GC electrode was about 4.34 × 10−10 mol cm−2.  相似文献   

18.
A novel strategy to quantify the cell number of leukemia K562A cells using electrochemical immunosensor was developed by effective surface immunoreaction between P-glycoprotein (P-gp) on cell membrane and P-gp mouse monoclonal antibody bound on an epoxysilane monolayer modified glassy carbon electrode. The surface morphologies of the epoxysilane monolayer and the bound antibodies were studied with atomic force microscopy. The binding of target K562A cells onto the immobilized antibodies increased the electron-transfer impedance of electrochemical probe, which depended linearly on the cell concentration in the range of 5.0 × 104–1.0 × 107 cells mL−1. The detection limit of the immunosensor was 7.1 × 103 cells mL−1. The proposed strategy showed acceptable reproducibility with an RSD of 3.4% for the linear slope and good precision with the RSD of 3.7% and 3.0% examined at the cell concentrations of 2.0 × 106 and 1.0 × 107 cells mL−1.  相似文献   

19.
Zirconium(IV) phosphosulphosalicylate, a cation exchanger was synthesized by mixing zirconium oxychloride to a mixture of 5-sulphosalicylic acid and phosphoric acid. The material showed good efficiency for the preparation of an ion-selective membrane electrode. The membrane was characterized affinity for Pb(II) ions. Due to its Pb(II) selective nature, the ion-exchanger was used as an electroactive by XRD and SEM analysis. The electrode responds to Pb(II) ions in a linear range from 1 × 10−5 to 1 × 10−1 M with a slope of 43.8 mV per decade change in concentration with detection limit of 4.78 × 10−6 M. The life span of electrode was found to be 90 days. The proposed electrode showed satisfactory performance over a pH range of 4.0–6.5, with a fast response time of 15 s. The sensor has been applied to the determination of Pb(II) ions in water samples of different origins. It has also been used as indicator electrode in potentiometric titration of Pb(II) ion with EDTA.  相似文献   

20.
4-Amino-2,2,6,6-tetramethyl-1-piperridine N-oxyl (4-amino-TEMPO), an electroactive nitroxide radical, was attached to the surface of graphene oxide (GO) and electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode by a simple, rapid and green electrografting method. The electroactive interfaces were analyzed by X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). The calculated surface coverage for 4-amino-TEMPO is up to 1.55 × 10 9 mol·cm 2. The modified electroactive interface exhibited excellent electrocatalytic activity towards the electro-oxidation of reduced glutathione (GSH) and hydrogen peroxide (H2O2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号