首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
LaFeO3 nanoparticles of approximately 22 nm in size were synthesized and characterized by XRD and TEM. A novel glassy carbon electrode modified with LaFeO3 nanoparticles was constructed and characterized by electrochemical impedance spectroscopy and cyclic voltammetry. The modified electrode exhibited strong promoting effect and high stability toward the electrochemical oxidation of dopamine (DA), which gave reversible redox peaks with a formal potential of 0.145 V (vs. Ag/AgCl) in pH 7.0 phosphate buffer solution. The anodic peak current (measured by constant potential amperometry) increased linearly with the concentration of dopamine in the range from 1.5?×?10?7 to 8.0?×?10?4 M. The detection limit was 3.0?×?10?8 M. The relative standard deviation of eight successive scans was 3.47% for 1.0?×?10?6 M DA. The interference by ascorbic acid was eliminated efficiently. The method was used to determine DA in dopamine hydrochloride injections and showed excellent sensitivity and recovery.  相似文献   

2.
A sensitive and selective electrochemical method for the determination of dopamine using an Evans Blue polymer film modified on glassy carbon electrode was developed. The Evans blue polymer film modified electrode shows excellent electrocatalytic activity toward the oxidation of dopamine in phosphate buffer solution (pH 4.5). The linear range of 1.0 x 10(-6)-3.0 x 10(-5) M and detection limit of 2.5 x 10(-7) M were observed in pH 4.5 phosphate buffer solutions. The interference studies showed that the modified electrode exhibits excellent selectivity in the presence of large excess of ascorbic acid and uric acid. The separation of the oxidation peak potentials for dopamine-ascorbic acid and dopamine-uric acid were about 182 mV and 180 mV, respectively. The differences are large enough to determine AA, DA and UA individually and simultaneously. This work provides a simple and easy approach to selectively detect dopamine in the presence of ascorbic acid and uric acid in physiological samples.  相似文献   

3.
A novel electrode was developed through electrodepositing gold nanoparticles (GNPs) on overoxidized-polyimidazole (PImox) film modified glassy carbon electrode (GCE). The combination of GNPs and the PImox film endowed the GNPs/PImox/GCE with good biological compatibility, high selectivity and sensitivity and excellent electrochemical catalytic activities towards ascorbic acid (AA), dopamine (DA), uric acid (UA) and tryptophan (Trp). In the fourfold co-existence system, the peak separations between AA–DA, DA–UA and UA–Trp were large up to 186, 165 and 285 mV, respectively. The calibration curves for AA, DA and UA were obtained in the range of 210.0–1010.0 μM, 5.0–268.0 μM and 6.0–486.0 μM with detection limits (S/N = 3) of 2.0 μM, 0.08 μM and 0.5 μM, respectively. Two linear calibrations for Trp were obtained over ranges of 3.0–34.0 μM and 84.0–464.0 μM with detection limit (S/N = 3) of 0.7 μM. In addition, the modified electrode was applied to detect AA, DA, UA and Trp in samples using standard addition method with satisfactory results.  相似文献   

4.
Palraj Kalimuthu 《Talanta》2010,80(5):1686-319
This paper describes the simultaneous determination of ascorbic acid (AA), dopamine (DA), uric acid (UA) and xanthine (XN) using an ultrathin electropolymerized film of 2-amino-1,3,4-thiadiazole (p-ATD) modified glassy carbon (GC) electrode in 0.20 M phosphate buffer solution (pH 5.0). Bare GC electrode failed to resolve the voltammetric signals of AA, DA, UA and XN in a mixture. On the other hand, the p-ATD modified electrode separated the voltammetric signals of AA, DA, UA and XN with potential differences of 110, 152 and 392 mV between AA-DA, DA-UA and UA-XN, respectively and also enhanced their oxidation peak currents. The modified electrode could sense 5 μM DA and 10 μM each UA and XN even in the presence of 200 μM AA. The oxidation currents were increased from 30 to 300 μM for AA, 5 to 50 μM for DA and 10 to 100 μM for each UA and XN, and the lowest detection limit was found to be 2.01, 0.33, 0.19 and 0.59 μM for AA, DA, UA and XN, respectively (S/N = 3). The practical application of the present modified electrode was demonstrated by the determination of AA, UA and XN in human urine samples.  相似文献   

5.
This paper describes the simultaneous determination of ascorbic acid (AA), norepinephrine (NE) and uric acid (UA) using a graphene modified glassy carbon electrode (GME) in pH 4.0 phosphate buffer solution. The electrochemical behaviors of AA, NE and UA at a bare glassy carbon electrode (GCE) and the GME were studied by cyclic voltammetry. Bare GCE failed to resolve the voltammetric signals of AA, NE and UA in a mixture, whereas the GME not only resolved their voltammetric signals, but also exhibited excellent electrocatalytic activity towards their electrochemical oxidation. The oxidation peak currents of AA, NE and UA were linearly proportional to their concentrations over the range of 1.0.0–1000.0, 0.6–45.0 and 1.0–100.0 μM, respectively, and their detection limits were 1.2, 0.10 and 0.60 μM, respectively, The modified electrode is of excellent sensitivity and selectivity, and has been satisfactorily used for the simultaneous determination of AA, NE and UA in their ternary mixture.  相似文献   

6.
We describe the modification of a carbon paste electrode (CPE) with multiwalled carbon nanotubes (MWCNT) and an ionic liquid (IL). Electrochemical studies revealed an optimized composition of 60 % graphite, 20 % paraffin, 10 % MWCNT and 10 % IL. In a next step, the optimized CPE was modified with palladium nanoparticles (Pd-NPs) by applying a double-pulse electrochemical technique. The resulting electrode was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, cyclic voltammetry, and electrochemical impedance spectroscopy. It gives three sharp and well separated oxidation peaks for ascorbic acid (AA), dopamine (DA), and uric acid (UA), with peak separations of 180 and 200 mV for AA-DA and DA-UA, respectively. The sensor enables simultaneous determination of AA, DA and UA with linear responses from 0.6 to 112, 0.1 to 151, and 0.5 to 225 μM, respectively, and with 200, 30 and 150 nM detection limits (at an S/N of 3). The method was successfully applied to the determination of AA, DA, and UA in spiked samples of human serum and urine. Figure
The CPE was modified with multiwalled carbon nanotubes and an ionic liquid. After optimization the electrode was further modified with palladium nanoparticles. The resulting electrode gives three sharp and well separated oxidation peaks for ascorbic acid, dopamine and uric acid  相似文献   

7.
Rafati  Amir Abbas  Afraz  Ahmadreza  Hajian  Ali  Assari  Parnaz 《Mikrochimica acta》2014,181(15):1999-2008

We describe the modification of a carbon paste electrode (CPE) with multiwalled carbon nanotubes (MWCNT) and an ionic liquid (IL). Electrochemical studies revealed an optimized composition of 60 % graphite, 20 % paraffin, 10 % MWCNT and 10 % IL. In a next step, the optimized CPE was modified with palladium nanoparticles (Pd-NPs) by applying a double-pulse electrochemical technique. The resulting electrode was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, cyclic voltammetry, and electrochemical impedance spectroscopy. It gives three sharp and well separated oxidation peaks for ascorbic acid (AA), dopamine (DA), and uric acid (UA), with peak separations of 180 and 200 mV for AA-DA and DA-UA, respectively. The sensor enables simultaneous determination of AA, DA and UA with linear responses from 0.6 to 112, 0.1 to 151, and 0.5 to 225 μM, respectively, and with 200, 30 and 150 nM detection limits (at an S/N of 3). The method was successfully applied to the determination of AA, DA, and UA in spiked samples of human serum and urine.

The CPE was modified with multiwalled carbon nanotubes and an ionic liquid. After optimization the electrode was further modified with palladium nanoparticles. The resulting electrode gives three sharp and well separated oxidation peaks for ascorbic acid, dopamine and uric acid

  相似文献   

8.
Graphite electrode is modified by casting multi-walled carbon nanotubes (MWCNTs) wrapped with polystyrene sulphonate (PSS) onto the surface of the bare graphite electrode. The modified electrode was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The behavior of the modified electrode towards the oxidation of ascorbic acid (AA), dopamine (DA) and uric acid (UA) has been determined by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry (CA). The modified electrode showed better electrocatalytic activity towards AA, DA and UA compared to bare graphite electrode. The electrochemical oxidation signals of AA, DA and UA are well separated into three distinct peaks with peak potential difference of 222, 128 and 350 mV between AA-DA, DA-UA and AA-UA respectively in CV studies and corresponding peak potential separation in DPV are 228, 120 and 348 mV. This modified electrode was successfully used for simultaneous determination of AA, DA and UA in ternary mixture.  相似文献   

9.
Pyrolytic graphite electrodes (PGE) were modified into dopamine solutions using phosphate buffer solutions, pH 10 and 6.5, as supporting electrolyte. The modification process involved a previous anodization of the working electrode at +1.5 V into 0.1 mol L−1 NaOH followed by other anodization step, in the same experimental conditions, into dopamine (DA) solutions. pH of the supporting electrolyte performed an important role in the production of a superficial melanin polymeric film, which permitted the simultaneous detection of ascorbic acid (AA), (DA) and uric acid (UA), ΔEAA-DA = 222 mV; ΔEAA-UA = 360 mV and ΔEDA-UA = 138 mV, avoiding the superficial poisoning effects. The calculated detection limits were: 1.4 × 10−6 mol L−1 for uric acid, 1.3 × 10−5 mol L−1 for ascorbic acid and 1.1 × 10−7 mol L−1 for dopamine, with sensitivities of (7.7 ± 0.5), (0.061 ± 0.001) and (9.5 ± 0.05) A mol−1 cm−2, respectively, with no mutual interference. Uric acid was determined in urine, blood and serum human samples after dilution in phosphate buffer and no additional sample pre-treatment was necessary. The concentration of uric acid in urine was higher than the values found in blood and serum and the recovery tests (92-102%) indicated that no matrix effects were observed.  相似文献   

10.
A new chemically modified electrode is constructed based on iron(III) doped zeolite modified carbon paste electrode (Fe(3+)Y/ZCME). The electrode was evaluated as a sensor for sub-micromolar determination of tryptophan (Trp), uric acid (UA) and ascorbic acid (AA) in aqueous solutions. The measurements were carried out by application of the differential pulse voltammetry (DPV) method in phosphate buffer solution with pH 3.5. Iron(III) loaded in zeolite can increase anodic peak currents by adsorption of Trp, UA and AA on electrode surface The analytical performance was evaluated with respect to the carbon paste composition, pH of solution, accumulation time and accumulation potential. The prepared electrode shows voltammetric responses with high sensitivity and selectivity for Trp, UA and AA in optimal conditions, which makes it very suitable for simultaneous determination of these compounds. The linear calibration range for AA in the presence of 50muM UA and 50muM Trp was 0.6muM to 100muM, with a correlation coefficient of 0.9992, and a detection limit of 0.21muM (S/N=3). A linear relationship was found for UA in the range of 0.3-700muM containing 10muM AA and 50muM Trp, with a correlation coefficient of 0.9990 and a detection limit of 0.08muM. The linear calibration range for Trp in the presence of 10muM AA and 50muM UA was 0.2-150muM, with a correlation coefficient of 0.9996, and a detection limit of 0.06muM. The proposed method was successfully applied for determination Trp, UA and AA in biological systems and pharmaceutical samples.  相似文献   

11.
Detection of dopamine (DA) in the presence of excess of ascorbic acid (AA) has been demonstrated using a conducting polymer matrix, poly (3,4-ethylenedioxythiophene) (PEDOT) film in neutral buffer (PBS 7.4) solution. The PEDOT film was deposited on a glassy carbon electrode by electropolymerization of EDOT from acetonitrile solution. Atomic force microscopy studies revealed that the electrodeposited film was found to be approximately 100 nm thick with a roughness factor of 2.6 nm. Voltammetric studies have shown catalytic oxidation of DA and AA on PEDOT modified electrode and can afford a peak potential separation of ∼0.2 V. It is speculated that the cationic PEDOT film interacts with the negatively charged ascorbate anion through favorable electrostatic interaction, which results in pre-concentration at a less anodic value. The positively charged DA tends to interact with the hydrophobic regions of PEDOT film through hydrophobic–hydrophobic interaction thus resulting in favorable adsorption on the polymer matrix. Further enhancement in sensitivity to micro molar level oxidation current for DA/AA oxidation was achieved by square wave voltammetry (SWV) which can detect DA at its low concentration of 1 μM in the presence of 1000 times higher concentration of AA (1 mM). Thus the PEDOT modified electrode exhibited a stable and sensitive response to DA in the presence of AA interference.  相似文献   

12.
研究了十六烷基三甲基溴化铵(CTMAB)/多壁碳纳米管修饰玻碳电极的制备以及多巴胺和抗坏血酸在该修饰电极上的电化学行为。在CTMAB和多壁碳纳米管的协同作用下,该修饰电极对多巴胺和抗坏血酸均具有显著的催化氧化作用,多巴胺和抗坏血酸的氧化峰电位分别为223mV和15mV,实现了在抗坏血酸共存时测定多巴胺。在pH7.0的磷酸盐缓冲溶液中,多巴胺和抗坏血酸的线性范围分别为2.0×10-6~2.0×10-3mol/L和4.0×10-5~1.0×10-2mol/L,检出限分别为6.0×10-7mol/L和1.0×10-5mol/L。  相似文献   

13.
A glassy carbon electrode (GCE) modified with the film composed of chitosan incorporating cetylpyridine bromide is constructed and used to determine uric acid (UA) and ascorbic acid (AA) by differential pulse voltammetry (DPV). This modified electrode shows efficient electrocatalytic activity and fairly selective separation for oxidation of AA and UA in mixture solution. UA is catalyzed by this modified electrode in phosphate buffer solution (pH 4.0) with a decrease of 80 mV, while AA is catalyzed with a decrease of 200 mV in overpotential compared to GCE, and the peak separation of oxidation between AA and UA is 260 mV, which is large enough to allow the determination of one in presence of the other. Under the optimum conditions, the anodic peak currents (I pa) of DPV are proportional to the concentration of UA in the range of 2.0 × 10−6 to 6.0 × 10−4 M, with the detection limit of 5.0 × 10−7 M at a signal-to-noise ratio of 3 (S/N = 3) and to that of AA in the range of 4.0 × 10−6 to 1.0 × 10−3 M, with the detection limit of 8.0 × 10−7 M (S/N = 3).  相似文献   

14.
Salimi A  Mamkhezri H  Hallaj R 《Talanta》2006,70(4):823-832
A sol-gel carbon composite electrode (CCE) has been prepared by mixing a sol-gel precursor (e.g. methyltrimethoxysilane) and carbon powder without adding any electron transfer mediator or specific reagents. It was demonstrated that this sensor can be used for simultaneous determination ascorbic acid, neurotransmitters (dopamine and adrenaline) and uric acid. Direct electrochemical oxidation of ascorbic acid, uric acid and catecholamines at a carbon composite electrode was investigated. The experimental results were compared with other common carbon based electrodes, specifically, boron doped diamond, glassy carbon, graphite and carbon paste electrodes. It was found that the CCE shows a significantly higher of reversibility for dopamine. In addition, in comparison to the other electrodes used, for CCE the oxidation peaks of uric acid, ascorbic acid and catecholamines in cyclic and square wave voltammetry were well resolved at the low positive potential with good sensitivity. The advantages of this sensor were high sensitivity, inherent stability and simplicity and ability for simultaneous determination of uric acid, catecholamines and ascorbic acid without using any chromatography or separation systems. The analytical performance of this sensor has been evaluated for detection of biological molecules in urine and serum as real samples.  相似文献   

15.
制备了一种新颖的Nation-离子液体一多壁碳纳米管复合膜修饰电极,并研究了抗坏血酸(AA)、多巴胺(DA)和尿酸(uA)在该修饰电极上的电化学行为.该修饰电极结合了多壁碳纳米管良好的导电性、离子液体优良的催化性能及Nation的高选择性等优点,对AA、DA和UA的氧化具有很好的催化和分离效果,实现了AA、DA和UA的同时测定.在三者共存体系中,AA和DA、DA和UA的氧化峰电位差分别为148和167mV.对AA、DA和UA的同时检测,线性范围分别为5-3200、1~1100和1-300gmol/L,检出限分别为1.66、0.33和0.33gmol/L.该修饰电极选择性好、稳定性高、重现性好,有望用于实际样品中AA、DA和UA的同时检测.  相似文献   

16.
Nanocrystalline graphite-like pyrolytic carbon film (PCF) electrode fabricated by a non-catalytic chemical vapor deposition (CVD) process was used for the simultaneous electrochemical sensing of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The electrode was studied with respect to changes in electrocatalytic activity caused by a simple and fast electrochemical pretreatment. The anodized electrode exhibited excellent performance compared to many chemically modified electrodes in terms of detection limit, linear dynamic range, and sensitivity. Differential pulse voltammetry (DPV) was used for the simultaneous determination of ternary mixtures of DA, AA, and UA. Under optimum conditions, the detection limits were 2.9 μM for AA, 0.04 μM for DA, and 0.03 μM for UA with sensitivities of 0.078, 5.345, and 6.192 A M−1, respectively. The peak separation was 219 mV between AA and DA and 150 mV between DA and UA. No electrode fouling was observed and good reproducibility was obtained in all the experiments. The sensor was successfully applied for the assay of DA in an injectable drug and UA in human urine by using standard addition method.  相似文献   

17.
A cobalt(II) tetrakisphenylporphyrin (Co(II)TPP) film modified glassy carbon electrode (Co(II)TPP-GCE) was prepared by just coating Co(II)TPP solution on the surface of the electrode. It can be used for the simultaneous determination of ascorbic acid and uric acid. The anodic peaks of AA and UA can be separated well. Owing to the strongly hydrophobic property of porphyrin, the modified electrode has good stability and long life. The linear range for UA and AA were 2.0 x 10(-6)-1.0 x 10(-4) M and 9.0 x 10(-6)-2.0 x 10(-3) M with detection limits of 5.0 x 10(-7) and 5.0 x 10(-6) M, respectively. Furthermore, metalloporphyrins of other kinds were also used to construct modified electrodes. Their performances were inferior compared with that of the Co(II)TPP modified electrode.  相似文献   

18.
The oxidation of phenosafranine at glassy carbon electrode gives rise to stable redox active electropolymerized film containing a polyazine moiety (poly(phenosafranine)). The redox response of the poly(phenosafranine) film was observed at the modified electrode at different pH and the pH dependence of the peak potential is 60 mV/pH, which is very close to the expected Nernstian behavior. The apparent diffusion coefficient (Dapp) of poly(phenosafranine) film was measured as 2.51 × 10−9 cm2/s. This film exhibits potent and persistent electron-mediating behavior followed by well-separated oxidation peaks towards ascorbic acid (AA), dopamine (DA) and serotonin with activation overpotential, which is 200 mV lower than that of the bare electrode for AA oxidation. Using differential pulse voltammetry (DPV) studies, the limit of detection of DA in the presence of AA is estimated to be in the submicromolar regime. This method has been used for determining DA and AA concentrations in real samples with satisfactory results.  相似文献   

19.
多壁碳纳米管修饰碳黑微电极同时测定多巴胺和抗坏血酸   总被引:1,自引:0,他引:1  
制备了多壁碳纳米管修饰碳黑微电极,研究了多巴胺(DA)和抗坏血酸(AA)在该修饰电极上的电化学行为.实验表明,在pH 7.0的PBS缓冲溶液中,该修饰电极对DA和从均具有显著的催化氧化作用,AA与DA的氧化电位分别为30 mV和280 mV(vs.SCE).利用二次导数线性扫描伏安法测定,DA与AA的线性范围分别为6.0×10-9~2.0×10-4 mol/L和2.0×10-7~1.0×10-3mol/L,检出限为2.0×10-9mol/L 和1.0×10-7mol/L.方法已用于人工合成样品的分析.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号