首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The voltammetric response of seleno-l-cystine has been studied at gold substrates under physiological conditions. The reactivity of diselenides is utilized to generate a modified electrode surface, which in turn allows for electroanalysis of solution-based selenium species. Stable and reproducible voltammetry is observed for selenocystine reduction at pH 7 on selenium-modified gold substrates (Emid =  486 mV vs. Ag/AgCl) and is consistent with a diffusionally controlled process. Modification of the gold surface is readily achieved via electrochemical cycling in the presence of a diselenide source at conventional scan rates. These studies afford voltammetric characterization of the selenocystine/selenocysteine redox couple under physiologically relevant conditions and highlight the potential utility of selenium-modified substrates for electroanalysis of chalcogen-containing species.  相似文献   

2.
This work points out that electrogeneration of silica gel (SG) films on glassy carbon electrodes (GCEs) can be applied to immobilize biomolecules – hemoglobin (Hb) or glucose oxidase (GOD) or both of them in mixture – without preventing their activity. These proteins were physically entrapped in the sol–gel material in the course of the electro-assisted deposition process applied to form the thin films onto the electrode surface. SG films were prepared from a precursor solution by applying a suitable cathodic potential likely to induce a local pH increase at the electrode/solution interface, accelerating thereby polycondensation of the silica precursors with concomitant film formation. Successful immobilization of proteins was checked by various physico-chemical techniques. Both Hb and GOD were found to undergo direct electron transfer, as demonstrated by cyclic voltammetry. GCE–SG–Hb gave rise to well-defined peaks at potentials Ec = −0.29 V and Ea = −0.17 V in acetate buffer, corresponding to the FeIII/FeII redox system of heme group of the protein, while GCE–SG–GOD was characterized by the typical signals of FAD group at Ec = −0.41 V and Ea = −0.33 V in phosphate buffer. These two redox processes were also evidenced on a single voltammogram when both Hb and GOD were present together in the same SG film. Hb entrapped in the silica thin film displayed an electrocatalytic behavior towards O2 and H2O2 in solution, respectively in the mM and μM concentration ranges. Immobilized GOD kept its biocatalytic properties towards glucose. Combined use of these two proteins in mixture has proven to be promising for detection of glucose in solution via the electrochemical monitoring of oxygen consumption (decrease of the oxygen electrocatalytic signal).  相似文献   

3.
A tungsten wire covered with Na0.75WO3 acts in potentiometry as a reversible pH electrode having a pH dependent open-circuit potential Eocp with nernstian slope. The mid-peak potential Emp of cyclic voltammograms also depends on pH. At low pH (e.g., pH 2) and slow scan rates (e.g., 2 mV s–1) the voltammetric response is almost completely reversible. At higher pH and faster scan rates, the voltammetric systems exhibit features of increasing irreversibility. Under the conditions of reversibility, the Eocp and Emp differ significantly. Eocp is determined by the proton transfer at the electrode surface; whereas Emp is determined by the electron transfer equilibrium tungsten(VI)/tungsten(V) and the proton transfer at the electrode surface. The difference between Eocp and Emp provides the individual thermodynamic contributions of electron and proton transfer to the overall pH dependent redox electrode. This is the first time that both contributions can be separated for an insertion electrochemical system (thin surface layer). It is also shown for the first time that the mechanism of an ion-sensitive electrode can differ in potentiometry and voltammetry.  相似文献   

4.
The electrochemical measurements were carried out by using thermophilic cytochrome P450 CYP119A2 (P450st) modified with poly(ethylene oxide) (PEO) in PEO200 as an electrochemical solvent. The PEO modified P450st gave clear reduction–oxidation peaks by cyclic voltammetry in oxygen-free PEO200 up to 120 °C. The midpoint potential measured for the P450st was −120 mV vs. [Fe(CN)6]4−/[Fe(CN)6]3− at 120 °C. The peak separation, ΔE, was 16 mV at 100 mV/s. The estimated electron transfer rate of PEO-P450st at 120 °C was 35.1 s−1. The faster electron transfer reaction was achieved at higher temperatures. The electrochemical reduction of dioxygen was observed at 115 °C with the PEO-modified P450st system.  相似文献   

5.
The electrochemical oxidation of catechol and hydroquinone was investigated using cyclic and differential pulse voltammetries at nanostructured mesoporous platinum film electrochemically deposited from the hexagonal liquid crystalline template of C16EO8 surfactant. The mesoporous platinum electrode has shown an excellent electrocatalytic activity and reversibility towards the oxidation of catechol and hydroquinone redox isomers in 1.0 M HClO4. The oxidation and reduction peak separation (ΔE) has been decreased from 485 to 55 mV for hydroquinone and from 430 to 75 mV vs. SCE for catechol at polished polycrystalline and mesoporous platinum electrodes, respectively. The differential pulse voltammograms in a mixture solution of catechol and hydroquinone have shown that the oxidation peaks became well resolved and are separated by about 100 mV, although the bare electrode gave a single broad oxidation peak. Moreover, the oxidation current of hydroquinone and catechol has been enhanced by a factor of two and four times, respectively, at mesoporous platinum electrode. Using differential pulse voltammetry, a highly selective and simultaneous determination of hydroquinone and catechol has been explored at mesoporous platinum electrode.  相似文献   

6.
An amperometric method for the rapid detection of Escherichia coli (E. coli) by flow injection analysis (FIA) using an IrO2–Pd chemically modified electrode (CME) was developed in this paper. The method is based on a good marker β-d-galactosidase which was found in E. coli strains. β-d-galactosidase was produced by the induction of isopropyl β-d-thiogalactopyranoside (IPTG) and released from E. coli cells through the permeabilization of both polymyxin B nonapeptide and lysozyme to E. coli cells wall. The released β-d-galactosidase could catalyze the hydrolysis of the substrate p-aminophenyl β-d-galactopyranoside (PAPG) in the culture medium to produce 4-aminophenol which was proportional to the concentration of E. coli. Hence, E. coli could be detected by the determination of 4-aminophenol. An IrO2–Pd CME, which showed high sensitivity in determination of 4-aminophenol, was prepared as the electro-detector in FIA. The amplified response current of 4-aminophenol obtained at the IrO2–Pd CME was linear with the concentration of E. coli ranging from 2.0 × 102 to 1.0 × 106 cfu/mL, the detection limit of this method to E. coli was 150 cfu/mL and the complete assay could be performed in 3 h.  相似文献   

7.
Significant enhancement in supercapacitor performance has been achieved via a new RuO2 nanocomposite materials prepared by direct ruthenium sputtering on arrayed multi-walled carbon nanotubes supported by Ti-buffered Si wafer. XPS, HRTEM and SAED analyses reveal that as-prepared nanoparticles have a crystalline Ru metal core with RuO2 oxide coating. The nanocomposites convert to RuO2–CNx NTs with subsequent electrochemical cycling. At present, well-dispersed and strongly adhered RuO2 NPs have been densely populated on CNx NTs to obtain the overall specific capacitance (1380 F/g-RuO2), charging–discharging rate (up to 600 mV/s) and operation stability (5000 cycles). Thus, RuO2–CNx NTs nanocomposites would make a promising candidate for use in next-generation high efficiency miniaturized supercapacitors directly fabricated on Si substrate.  相似文献   

8.
By dissolving crystalline V2O5 in hydrogen peroxide and drying at elevated temperature, the V2O5 xerogel was obtained. Its electrochemical behaviour was examined in aqueous solution of LiNO3 by both cyclic voltammetry and galvanostatic charging/discharging cycling. Peak-to-peak potential separation observed at the cyclovoltammograms indicated fast Li+ intercalation/deintercalation reactions. Initial discharge capacity amounted to 69 mAhg?1, and after 100 charging/discharging cycles, capacity fade amounted to 11% only. This presents a remarkable improvement in comparison with the behaviour of crystalline, vanadium oxide based, lithium intercalates in aqueous electrolytes.  相似文献   

9.
The influence of vinylene carbonate addition to aqueous LiNO3 solution on the Li-ion insertion performance of a Li1.05Cr0.10Mn1.85O4 was studied by galvanostatic charging/discharging. Without additive, the coulombic capacity amounted initially to 80 mA h g?1 and, during 50 galvanostatic charging/discharging cycles, decreased to 44.1% of the initial value. Upon VC addition in an amount of 1 wt.%, the initial discharge capacity of 112 mA h g?1 was registered which after 100th charging/discharging cycles retained even 82% of the initial value. This is the first report of a successful use of an additive to improve the behaviour of a Li-intercalation material in an aqueous solution.  相似文献   

10.
The electrochemical reduction of molecular oxygen (O2) has been performed at gold electrodes modified with a submonolayer of a self-assembly (sub-SAM/Au) of a thiol compound (typically cysteine (CYST)) in O2-saturated 0.5 M KOH. At bare gold electrode O2 reduction reaction proceeds irreversibly, while this reaction is totally hindered at gold electrodes with a compact structure of CYST over its surface. The partial reductive desorption of the compact CYST monolayer was achieved by controlling the potential of the CYST/Au electrode, leading to the formation of a submonolayer coverage of the thiol compound over the Au electrode surface (sub-SAM/Au), at which the CYST molecules selectively block the Au(1 0 0) and Au(1 1 0) fractions (the so-called rough domains) of the polycrystalline Au while the Au(1 1 1) component (the so-called smooth domains) remains bare (i.e., uncovered with CYST). This sub-SAM/Au electrode extraordinarily exhibits a quasi-reversible two-electron reduction of molecular oxygen (O2) in alkaline medium with a peak separation (ΔEp) between the cathodic and anodic peak potentials (Epc,Epa) of about 60 mV. The ratio of the anodic current to the cathodic one is close to unity. The formal potential (Eo) of this reaction is found to equal −150 mV vs. Ag/AgCl/KCl(sat.).  相似文献   

11.
Some oxide catalysts, such as RuO2/Ti, IrO2/Ti and IrM(M: Ru, Mo, W, V)Ox/Ti binary oxide electrodes, were prepared by using a dip-coating method on a Ti substrate. Their catalytic behavior for the oxygen reduction reaction (ORR) was evaluated by cyclic voltammetry in 0.5 M H2SO4 at 60 °C. These catalysts were found to exhibit considerably high activity, and the most active one among them was Ir0.6V0.4O2/Ti prepared at 450 °C, showing onset potential for the ORR at about 0.86 V–0.90 (vs RHE).  相似文献   

12.
This paper reports two low-profile (~ 10 μm thick) solid state reference electrodes for use in solid polymer electrolytes. The thin, open geometry of the electrodes enables close positioning between the working and counter electrodes. The first electrode uses the palladium hydride (Pd|PdHx) couple (PHRE), and the second utilises the hydrous iridium oxide (IrOx·yH2O|IrOa·bH2O) couple (IORE). To our knowledge this is the first use of the latter as a reference electrode. The PHRE had a stable potential of + 70 mV vs RHE with a 4 mV h 1 drift and two hour lifetime, whilst the IORE gave a potential of + 847 mV vs RHE with a drift of 0.3 mV h 1 and no deterioration after 24 h of use. The use of these reference electrodes in a three-electrode solid state cell and a fuel cell is demonstrated.  相似文献   

13.
We report on the synthesis of complexes having two equivalent redox active 2,5-dimethylazaferrocenyl entities connected by heteroaryl (heteroaryl = thiophenyl, bithiophenyl and pyridyl) bridges. The new compounds have been investigated by various electrochemical techniques including cyclic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SW) and were found to exhibit two consecutive reversible or partially reversible one-electron oxidations. Comproportionation constants (Kc) calculated from ΔE1/2 values indicate that the thermodynamic stability of their monoxidized forms exceeds those of analogous ferrocenes. In this paper we also report the X-ray crystal structure and UV–Vis spectroelectrochemistry of parent 2,5-dimethylazaferrocene.  相似文献   

14.
Here we report on a novel supercapacitor electrode based on IrO2–Ta2O5 nanoparticles supported on WO3 nanoplatelets. The nanoplatelets were directly grown on a W plate using a facile hydrothermal method, whereas the IrO2–Ta2O5 nanoparticles were formed via a thermal decomposition technique which can be easily scaled up. The structural, morphological, and electrochemical properties of the WO3 nanoplatelets and the formed trimetallic oxide nanocomposite have been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), cyclic voltammetry (CV), and charging/discharging techniques. The fabricated trimetallic oxide nanocomposite exihibited rectangular cyclic voltamograms even tested at high potential scan rates, a high specific capacitance and high charging/discharging stability, promising utilization in the design of high-performance devices for energy storage.  相似文献   

15.
Anodic oxide films were formed on the deposited pure titanium in 0.1 M H2SO4 solution at 30 °C by using cyclic voltammetry (CV) anodization technique. Clear atomic images and step-terrace structure were observed on it by using STM, which gave a direct evidence for the local crystallinity of the anodic oxide films, even though the maximum anodization potential (Emax) was −50 mV, which was much lower than the lowest potential for crystallization in literatures. Moreover, the crystalline degree of the whole anodic oxide film was estimated from the refractive index (n), and the results showed that the crystalline degree increased with potentials. The analysis of XPS spectra revealed that high potentials were also beneficial for the formation of TiO2, which was the primary substance for the formation of stable crystals in the oxide films.  相似文献   

16.
The mechanism has been investigated by cyclic voltammetry for the ion transfer from one aqueous phase (W1) to another (W2) across a bilayer lipid membrane (BLM) in the presence of a typical uncoupler, carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP). Voltammograms for the ion transfer were in steady-state and showed rotated sigmoidal and symmetrical shape about the origin (0 V, 0 A). The magnitude of the ion transfer current at a given applied potential increased linearly with the concentration of FCCP in W2 up to 10−6 M and then became saturated. The ion transfer current also showed a bell-type dependence on pH centered around pH  pKa + 1, Ka being the dissociation constant of FCCP in aqueous phase. These properties have been well explained by our proposed model that the ion transfer current is attributable to the transfers of H+ and Na+ distributed in BLM. The hydrophilic counter ions, H+ and Na+, compensate the negative charge of the dissociated FCCP in BLM. The current intensity is predominantly governed by the concentration and the ion mobility of the counter cations.  相似文献   

17.
Electrochemical deposition of PbTe from 50 mM Pb(NO3)2 + 1 mM TeO2 + 0.1 M HNO3 solution onto n-Si(1 0 0) wafers was studied using cyclic voltammetry (CV), chronoamperometry, ex situ SEM, XRD and EDX. Electrochemical behavior of n-Si(1 0 0) electrode in electrolytes 50 mM Pb(NO3)2 + 0.1 M HNO3 and 1 mM TeO2 + 0.1 M HNO3 was also studied. No underpotential deposition (UPD) of Pb and Te onto n-Si was observed in the investigated systems indicating weak Pb–Si and Te–Si interactions. Deposition of Pb and Te on n-Si occurred with overvoltage via 3D island growth. Electrosynthesis of PbTe (NaCl-like structure, a = 0.650 nm) takes place due to codeposition of Pb and Te at potentials E > EPb2+/Pb0 (lead UPD onto tellurium). Cathodic deposition of PbTe onto n-Si(1 0 0) is irreversible – there is no anodic current in the CV curve. Oxidation of PbTe on n-Si is observed only under illumination, when photoelectrons and photoholes are generated in silicon substrate.  相似文献   

18.
In the research, thermogravimetry (TG), a combination of thermogravimetry and Fourier transform infrared spectrometer (TG–FTIR) and X-ray diffraction (XRD) were used to investigate pyrolysis characteristics of moso bamboo (Phyllostachys pubescens). The Flynn–Wall–Ozawa and Coats–Redfern (modified) methods were used to determine the apparent activation energy (Ea). The TG curve indicated that the pyrolysis process of moso bamboo included three steps and the main pyrolysis occurred in the second steps with temperature range from 450 K to 650 K and over 68.69% mass was degraded. TG–FTIR analysis showed that the main pyrolysis products included absorbed water (H2O), methane gas (CH4), carbon dioxide (CO2), acids and aldehydes, ammonia gas (NH3), etc. XRD analysis expressed that the index and width crystallinity of moso bamboo gradually increased from 273 K to 538 K and cellulose gradually degraded from amorphous region to crystalline region. The Ea values of moso bamboo increased with conversion rate increase from 10 to 70. The Ea values were, respectively 153.37–198.55 kJ/mol and 152.14–197.87 kJ/mol based on Flynn–Wall–Ozawa and Coats–Redfern (modified) methods. The information was very helpful and significant to design manufacturing process of bio-energy, made from moso bamboo, using gasification or pyrolysis methods.  相似文献   

19.
Oxygen evolution on Ti/IrO2 anodes has been studied in 1M HClO4 electrolyte using 18O labelling together with differential electrochemical mass spectrometry (DEMS) measurements.It has been shown that during successive cyclic voltammetric measurements in H2 18O containing electrolyte the amount of 16O2 (m/z = 32) decreases, with a concomitant increase of 18O16O (m/z = 34) after each cycle before reaching a steady state after four cycles. The obtained higher 16O2 concentration in the evolved oxygen during the first scans is because 16O from the IrO2 film contribute in the oxygen evolution reaction.Analysis of the experimental data has shown that the amount of lattice oxygen, which is involved in the oxygen exchange reaction, is in the order of 1% of the total IrO2 loading. This is an indication that only the outer surface of the oxide electrode participates in the oxygen evolution reaction.In a second series of experiments it has been demonstrated that oxygen evolution on Ir16O2 in H218O containing electrolyte result in the formation of Ir18O2.Consequently, we can conclude that the IrO2 layers participate in the oxygen evolution reaction in acid media at least to a several monolayer extend.  相似文献   

20.
Electrode materials for supercapacitors are at present commonly evaluated and selected by their mass specific capacitance (CM, F g−1). However, using only this parameter may be a misleading practice because the electrode capacitance also depends on kinetics, and may not increase simply by increasing material mass. It is therefore important to complement CM by the practically accessible electrode specific capacitance (CE, F cm−2) in material selection. Poly[3,4-ethylene-dioxythiophene] (PEDOT) has a mass specific capacitance lower than other common conducting polymers, e.g. polyaniline. However, as demonstrated in this communication, this polymer can be potentiostatically grown to very thick films (up to 0.5 mm) that were porous at both micro- and nanometer scales. Measured by both cyclic voltammetry and electrochemical impedance spectrometry, these thick PEDOT films exhibited electrode specific capacitance (CE, F cm−2) increasing linearly with the film deposition charge, approaching 5 F cm−2, which is currently the highest amongst all reported materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号