首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The electrochemical oxidation of β-nicotinamide adenine dinucleotide (NADH) is studied at a glassy carbon electrode (GCE) modified with bicontinuous gyroidal mesoporous carbon (BGMC). Due to the large surface area and remarkable electrocatalytic properties of BGMC, the BGMC/GCE exhibits potent electrocatalytic activity toward the electro-oxidation of NADH. A substantial decrease of 649 mV in the overpotential of NADH oxidation reaction is achieved compared with a bare GCE. The anodic peak currents increase steadily with the concentration of NADH in a broad range from 3.0 × 10?6 to 1.4 × 10?3 M with a low detection limit of 1.0 × 10?6 M under the optimal condition.  相似文献   

2.
You C  Yan X  Kong J  Zhao D  Liu B 《Talanta》2011,83(5):1507-1514
A strategy of protein-entrapment in bicontinuous gyroidal mesoporous carbon (BGMC) nanocomposite films is described. Herein, the quasi-reversible electron transfer of redox proteins (such as glucose oxidase and myoglobin) is probed and the associated biocatalytic activity is revealed. The apparent heterogeneous electron transfer rate constant of the immobilized glucose oxidase is up to 9.4 s−1, much larger than those in carbon nanotubes and some conventional mesoporous carbons. The BGMC based glucose biosensor enables the determination of glucose at a potential of 0.6 V (vs. SCE). Its detection limit is 1.0 × 10−5 M (signal-to-noise ratio, S/N = 3), the linear response is up to 7.49 mM and the detection sensitivity is 52.5 nA mM−1 Furthermore, a series of BGMCs with different pore sizes is designed and synthesized using sucrose or phenol formaldehyde resin to study the influences of pore sizes and carbon sources on the immobilization of redox proteins and on the heterogeneous electron transfer.  相似文献   

3.
Glucose-oxidizing enzymes are widely used in electrochemical biosensors and biofuel cells; in most applications glucose oxidase, an enzyme with non-covalently bound FAD and low capability of direct electronic communications with electrodes, is used. Here, we show that another glucose-oxidizing enzyme with a covalently bound FAD center, hexose oxidase (HOX), adsorbed on graphite, exhibits a pronounced non-catalytic voltammetric response from its FAD, at − 307 mV vs. Ag/AgCl, pH 7, characterized by the heterogeneous electron transfer (ET) rate constant of 29.2 ± 4.5 s 1. Direct bioelectrocatalytic oxidation of glucose by HOX proceeded, although, with a 350 mV overpotential relative to FAD signals, which may be connected with a limiting step in biocatalysis under conditions of the replacement of the natural redox partner, O2, by the electrode; mediated bioelectrocatalysis was consistent with the potentials of a soluble redox mediator used. The results allow development of HOX-based electrochemical biosensors for sugar monitoring and biofuel cells exploiting direct ET of HOX, and, not the least, fundamental studies of ET non-complicated by the loss of FAD from the protein matrix.  相似文献   

4.
Two mesoporous carbons (with 15 (CIC-15) and 26 nm (CIC-26) diameter pores) were synthesized using a silica colloid imprinting method, loaded with 10 wt.% Pt, and then evaluated (against Vulcan? carbon (VC)) as oxygen reduction (ORR) catalysts for use in proton exchange membrane fuel cells. Both Pt/CICs reproducibly out-performed Pt/VC, with Pt/CIC-15 demonstrating higher ORR activity than Pt/CIC-26, despite its smaller pore size and lower surface area. Transmission electron tomography showed that the Pt nanoparticles (4–5 nm diameter) are fully deposited throughout the pores of the CICs and that the pore distribution in CIC-26 is partially ordered, while CIC-15 shows no ordering of its pores. Importantly, using the powerful imaging capabilities of transmission electron tomography, a first-time correlation is demonstrated between the ORR activity and the wall thickness of the carbon support materials. Pt/CIC-15 has significantly thicker walls, giving a lower measured electronic resistance, a lower ORR Tafel slope, and thus better performance overall compared to Pt/CIC-26.  相似文献   

5.
Tungsten-containing formate dehydrogenase from Methylobacterium extorquens AM1 (FoDH1) catalyzes formate oxidation with NAD+. FoDH1 shows little direct communication with carbon electrodes, including mesoporous Ketjen Black-modified glassy carbon electrode (KB/GCE); however, it shows well-defined direct electron transfer (DET)-type bioelectrocatalysis of carbon dioxide reduction, formate oxidation, NAD+ reduction, and NADH oxidation on gold nanoparticle (AuNP)-embedded KB/GCE treated with 4-mercaptopyridine. Microscopic measurements reveal that the AuNPs (d = 5 nm) embedded on the KB surface are uniformly dispersed. Electrochemical data indicate that the pyridine moiety on the AuNPs plays important roles in facilitating the interfacial electron transfer kinetics and increasing the probability of productive orientation of FoDH1. The formal potential of the electrochemical communication site, which is most probably an ion‑sulfur cluster, is evaluated as − 0.591 ± 0.005 V vs. Ag | AgCl | sat. KCl from Nernst analysis of the steady-state catalytic waves.  相似文献   

6.
It was found that homogeneous activity of Trametes hirsuta laccase is considerably diminished in the presence of gold nanoparticles (Au-NPs). Heterogeneous electron transfer studies revealed that Au-NPs facilitate direct electron transfer (DET) between the T1 copper site of the laccase and the surface of Au-NP modified electrodes. DET was characterized by the standard heterogeneous ET constant of 0.5 ± 0.6 s?1 at Au-NPs with an average diameter of 50 nm. As a consequence of this a well pronounced DET based bioelectrocatalytic oxygen reduction with current densities of 5–30 µA cm?2 has been achieved at the laccase–Au-NP modified electrodes.  相似文献   

7.
The novel highly ordered mesoporous titanium oxide (mesoTiO2) materials, prepared by the “acid–base pairs” route, were firstly used for the immobilization of hemoglobin (Hb) and its bioelectrochemical properties were studied. FTIR and UV–vis spectroscopy demonstrated that Hb in the mesoTiO2 matrix could retain its native secondary structure. The CV results of Hb/mesoTiO2-modified electrode showed a pair of well-defined and quasi-reversible redox peaks centered at approximate −0.158 V (vs. SCE) in pH 6.0 phosphate buffer solution. It reflects the characteristic of Hb heme Fe (III)/Fe(II) redox couple with fast heterogeneous electron transfer rate. The immobilized Hb also displayed its good electrocatalytic activity for the reduction of hydrogen peroxide. The results demonstrate that the mesoTiO2 matrix may improve the protein loading with the retention of bioactivity and greatly promote the direct electron transfer, which can be attributed to its high specific surface area, uniform three-dimensional well-ordered porous structure, suitable pore size and biocompatibility.  相似文献   

8.
A green and efficient route has been employed to synthesize a worm-like mesoporous carbon with high specific surface area (2587 m2 g?1) and large pore volume (3.14 cm3 g?1). Three electrochemical methods have been used to measure its electrochemical performance. Worm-like mesoporous carbon performs the high specific capacitance (344 F g?1) at constant-current densities of 50 mA g?1.  相似文献   

9.
Nano-structured Li3V2(PO4)3/carbon composite (Li3V2(PO4)3/C) has been successfully prepared by incorporating the precursor solution into a highly mesoporous carbon with an expanded pore structure. X-ray diffraction analysis, scanning electron microscopy, and transmission electron microscopy were used to characterize the structure of the composites. Li3V2(PO4)3 had particle sizes of < 50 nm and was well dispersed in the carbon matrix. When cycled within a voltage range of 3 to 4.3 V, a Li3V2(PO4)3/C composite delivered a reversible capacity of 122 mA h g? 1 at a 1C rate and maintained a specific discharge capacity of 83 mA h g? 1 at a 32C rate. These results demonstrate that cathodes made from a nano-structured Li3V2(PO4)3 and mesoporous carbon composite material have great potential for use in high-power Li-ion batteries.  相似文献   

10.
Robust molecular bioelectronic devices require a programmable and efficient electronic communication between biological molecules and electrodes. With proteins it is often compromised by their uncontrollable assembly on electrodes that does not provide neither uniform nor efficient electron flow between proteins and electrodes. Here, horseradish peroxidase reconstituted onto C11-alkanethiol-conjugated hemin and self-assembled onto the gold nanoparticle (NP)-modified electrodes via the exposed alkanethiol tail exhibits enhanced electron transfer (ET), proceeding via the gold NP relay with the ET rate constant approaching 115 s 1 vs. 14 s 1 shown on bare gold, by this offering an advanced controllable design of interfaces for bioelectronic devices based on heme-containing enzymes with a non-covalently bound heme.  相似文献   

11.
The electrochemical properties of one novel carbon material, ordered mesoporous carbons (OMC), synthesized by templating SBA-15 mesoporous silica materials and the electrocatalytic behaviors of OMC modified electrode towards the oxidation of dopamine (DA) and ascorbic acid (AA) were studied. Cyclic voltammetry was used to evaluate the electrochemical behaviors of OMC in 5 mM K3Fe(CN)6/0.1 M KCl solution. OMC showed a faster electron transfer rate, as compared with glass carbon (GC) electrode. The higher electron transfer kinetics can be attributed to the existence of a large amount of edge plane defect sites in the OMC materials, which was verified by Raman spectroscopy. The cyclic voltammetric studies also showed the presence of oxygen-containing functional groups on the surface of OMC. Furthermore, the OMC modified electrode showed high electrocatalytic activities toward the oxidation of DA and AA, and resolved their voltammetric responses into two well-defined peaks with peak separation of ca. 0.210 V. The OMC modified electrode could be effectively used for the selective electrochemical determination of DA in the presence of AA.  相似文献   

12.
The internal reorganization energy (λV) of photoinduced electron transfer (ET) in the supramolecular donor–acceptor dyads of 2,3,7,8,12,13,17,18-octaethylporphinatozinc(II) (ZnOEP) and electron acceptor ligands was compared with those of structural isomers, 2,3,7,8,11,12,17,18-octaethylhemiporphycenatozinc(II) (ZnHPc) and 2,3,6,7,12,13,16,17-octaethylporphycenatozinc(II) (ZnPcn). First, ET process of the supramolecular donor–acceptor dyads of ZnOEP was investigated by means of the transient absorption spectroscopy mainly. The formation of supramolecular dyads was confirmed by absorption spectral change, from which the association constant was estimated. The ET process was confirmed by the observation of radical cation of ZnOEP during the laser flash photolysis. The ET rates of these dyads are in the order of ZnOEP > ZnHPc > ZnPcn, when the driving forces for ET are similar to each other. From the free energy dependence of ET rates, the λV values of OEP and its isomers were estimated. The estimated λV value was in the order of ZnOEP < ZnHPc < ZnPcn. This tendency was reproduced by calculation at B3LYP/6-31G(d) and BHandHLYP/6-31G(d) levels. The origin of this tendency was discussed on the basis of the structural change during the ET process.  相似文献   

13.
Femtosecond degenerate four-wave-mixing (DFWM) spectroscopy was carried out to investigate the behavior of coherent wavepacket motion in an ultrafast intermolecular electron transfer (ET) system which consists of a dye molecule, oxazine 1 (Ox1), in an electron donating solvent, N,N-dimethylaniline (DMA). Due to the ultrafast ET in DMA with time constant of ca. 59–81 fs, acceleration of the vibrational dephasing for the excited state mode at 562 cm−1 was observed by the DFWM measurement and confirmed by pump-probe (PP) spectroscopy. Interestingly, the dephasing time of the excited state mode in DMA is in the order of 160–240 fs, which is significantly longer than the time constant of ET, which indicates that the oscillation is not diminished instantaneously by the ET but somewhat persists into the product state.  相似文献   

14.
A mesocellular carbon foam (MCF-C) was prepared by nanocasting technology using mesocellular foam (MCF) silica hard template. The obtained carbon sample exhibits bimodal mesopores with narrow pore size distribution, centered at 4.3 and 30.4 nm. The MCF-C was evaluated as positive electrode in lithium/oxygen battery. It showed a higher discharge capacity, about 40% increased capacity compared to several commercial carbon black. The enhanced performance is probably ascribed to their large pore volumes and ultra-large mesoporous structures, which allow more lithium oxide deposit during discharge process.  相似文献   

15.
The synthesis procedure of the highly mesoporous hollow carbon hemispheres (HCHs) using glucose as carbon source and solid core mesoporous shell silica (SCMSS) as template and the formation mechanism of the HCHs have been presented. The HCHs show an ultrahigh surface area of 1095.59 m2 g?1 and an average mesopore size of 9.38 nm. The hemispherical structure with large mesopores also results in the improvement in the mass transfer and therefore more concentrated ethanol solution can be used to increase the energy density. The additional advantage of the HCHs compared to the hollow carbon spheres is that they can provide the similar surface area at reduced volume. The current densities of ethanol oxidation on Pd nanoparticles supported on HCH (Pd/HCH) electrocatalyst are three times as many as on Pd/C at the same Pd loadings.  相似文献   

16.
The encapsulation of hemoglobin (Hb) on the mesoporous silicas SBA-15 and Au-doped SBA-15 (Au-SBA-15) has been studied as a model protein adsorption system. The influences of solution pH, structure of mesoporous silicas and gold nanoparticles incorporation on Hb immobilization are investigated in detail. The spectral characteristics of Hb/SBA-15 and Hb/Au-SBA-15 nanoconjugate show an absorption curve quite similar to that of native Hb, indicating that Hb retains its higher-order structure in the mesopores of SBA-15. Direct electrochemistry of Hb is obtained when Hb is adsorpted by mesoporous silicas SBA-15 or Au-SBA-15. Moreover, Hb/Au-SBA-15 exerts enhancing electron transfer ability because of the Au incorporation. Additionally, the Hb/Au-SBA-15 displays good electrocatalytic reduction of hydrogen peroxide with a detection limit of 1.0 μM, about 3 times as low as that for the Hb/SBA-15. The Hb/Au-SBA-15 exhibits higher peroxidase-like activity with the apparent Michaelis–Menton constant (Km) of 2.87 mM, significantly lower than the 7.78 mM value for the Hb/SBA-15.  相似文献   

17.
The type 1 (T1) or blue Cu (BC) proteins are a highly studied group of electron transfer (ET) active sites in bioinorganic chemistry. In this review, we cover several more recent results which extend the understanding of the geometric and electronic structure of these interesting Cu ET sites. Spectroscopic methods in tandem with density functional theory (DFT) and time dependent-DFT (TD-DFT) calculations have been used in studies of S  Se variants as well as a series of metal-varied model complexes (M = Mn2+  Zn2+). The ligand and metal perturbations further defined the origins of the unique spectral features of BC proteins. These unique spectral features show different temperature dependencies in different T1 sites, and contrasts drawn between their behaviors define the role of the protein in tuning the geometric and electronic structure of the BC site for function. This has been termed the ‘entatic’ or ‘rack-induced’ state in bioinorganic chemistry.  相似文献   

18.
Nanostructured PtRu material has been successively synthesized via chemical co-reduction of hexachloroplatinic acid and ruthenium trichloride using three-dimensional (3D) hexagonal mesoporous SBA-12 silica as a solid template, and has been studied as an electrocatalyst toward methanol electro-oxidation. The ordered nanostructure of the PtRu particles has been disclosed by transmission electron micrographs and is characterized by regular pores of ca. 3.0 ± 0.3 nm in diameter separated by walls of ca. 3.0 ± 0.3 nm thick. X-ray diffraction and energy dispersive X-ray spectroscope studies indicate that the PtRu material comprises of complicated phases rather than a single alloy phase of Pt and Ru. The specific electrochemical surface area of the nanostructured powder measured using both CO and underpotential deposited Cu stripping techniques is 74–78 m2 g–1, higher than that of unsupported precious metal catalysts prepared using standard techniques. The combination of high surface area and periodic nanostructure of the templated PtRu makes it an interesting promising fuel cell electrocatalyst. This has been demonstrated by the high activity of the templated PtRu towards the methanol electrooxidation. Therefore the solid template route based on 3D mesoporous silica with controlled pore size and high pore interconnectivity provides an interesting alternative to produce promising high-surface-area electrode materials.  相似文献   

19.
Ordered mesoporous aluminas with high surface areas (up to 783 m2/g), large pore volumes (up to 0.82 cm3/g) and the presence of complementary micropores (up to 0.17 cm3/g) are synthesized with Pluronic® F127 or P123 triblock copolymers in a one-pot synthesis of metal alkoxide, template and cosolvent molecules such as 1,3,5-trimethylbenzene or 1,3,5-triisopropylbenzene in an acidic ethanol solution at 15 °C. Materials are characterized by nitrogen adsorption analysis, small-angle X-ray diffraction and transmission electron microscopy.  相似文献   

20.
Trimodal hierarchical yolk-shell materials consisting of TS-1 core and mesoporous carbon shell(YS-TS-1@MC) was successfully synthesized by using TS-1@mesosilica as hard template,sucrose as carbon source and organic base tetrapropylammonium hydroxide(TPAOH) as silica etching agent.The resultant YS-TS-1@MC contains the micropores(0.51 nm) in TS-1 core,the mesopores(2.9 nm) in carbon shell as well as a void or a stack pore between TS-1 fragcments(TS-1 intercrystal mesopores,~18.4 nm).Under the rigorous etching conditions,the crystalline structure of TS-1 core was well retained.The YS-TS-1@MC served as a good support for palladium nano-particles(Pd NPs) or Rh(OH)x species,giving rise to efficient bifunctional catalysts for the tandem reactions including one-pot synthesis of propylene oxide or amides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号