首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 597 毫秒
1.
水热法制备TiO_2纳米线薄膜的光生阴极保护性能   总被引:2,自引:0,他引:2  
应用水热法在钛箔表面制备TiO2纳米线薄膜,采用场发射扫描电子显微镜、X射线衍射和紫外-可见分光光度法对薄膜进行表征,用电极电位和电化学阻抗谱考察TiO2光生阴极保护性能.结果表明:薄膜由纵横交错的锐钛矿型TiO2纳米线组成,纳米线的直径约10nm.在150℃下反应6h生成的TiO2纳米线薄膜在0.3mol·L-1 Na2SO4溶液和0.3mol·L-1 Na2SO4+0.5mol·L-1 HCOOH混合溶液中对与TiO2薄膜耦连的403不锈钢均有良好的阴极保护效应.TiO2膜所在溶液中含有HCOOH时,可使耦连的403不锈钢在0.5mol·L-1 NaCl溶液中电极电位负移约545mV,界面反应电阻显著变小,表明电解质溶液加入HCOOH可以增强TiO2纳米线薄膜对403不锈钢的光生阴极保护效应.  相似文献   

2.
The scanning reference electrode technique (SRET) was used to characterize the corrosion behavior of carbon steel in the NaNO2-containing chloride solution and tap water. In 10−3 MNaNO2+10−3 MNaCl+10−3 MNa2SO4 solution, the passivated carbon steel surface suffered the pitting. In this case, the size of anodic and cathodic areas on the corroding surface varied with the exposed time, but anodic and cathodic sites did not change. On the contrary, the carbon steel was corroded generally in the tap water. The localized anodes and cathodes on the corroding surface were not fixed but movable with the exposed time during the whole corrosion process, and the “movable anodes” can be in situ monitored and momentarily identified by SRET measurements.  相似文献   

3.
The aim of the present work was to investigate electrochemical behavior of the Ti6Al7Nb alloy in the simulated body fluid (SBF) containing Ca2+, HCO3 ?, and HPO4 2? ions. At first, optimal conditions necessary for oxide nanotube formation were determined. The experiments were conducted in the 1 M (NH4)2SO4 with 0.5 wt% NH4F electrolyte at room temperature. Anodization of the alloy samples was carried out under variable external voltage U in the range from 10 to 40 V at room temperature. Obtained surface morphology was examined by SEM and X-ray techniques. Nanotube diameter was calculated and correlated with the imposed voltage. Having control over the size of nanotubes, samples with the obtained nanostructures of a chosen diameter were immersed into SBF solution with pH = 7.4 for a fixed period of time. Then, they were removed from the fluid and subjected to the electrochemical investigation. Corrosion current and corrosion potential were determined, and it was found that the best anticorrosion properties were obtained for heat-treated nanotube layer: i corr = 39 nA/cm2 and E corr = ?0.236 V vs Ag/AgCl. Finally, the interaction between the oxide surface and the solution was studied using polarization and electrochemical impedance spectroscopy (EIS) techniques.  相似文献   

4.
基于电化学噪声研究缓蚀剂对AA6063铝合金点蚀的影响   总被引:1,自引:0,他引:1  
采用电化学噪声(ECN)、电化学阻抗谱(EIS)和极化曲线研究了AA6063 铝合金在3% (w) NaCl 溶液中的亚稳态点蚀萌发和稳态点蚀生长特征, 着重探讨了CeCl3、Na2CrO4、8-羟基喹啉(8-HQ)等三种不同类型缓蚀剂对亚稳态和稳态点蚀的抑制机理. 结果表明: 当铝合金表面阴极相(Al-Si-Fe)周边的Al 基体发生局部溶解后,会导致邻近区域pH值升高(>8.4), 引起Ce(OH)3在蚀点中心区的阴极相表面优先沉积, 从而抑制局部腐蚀的阴极去极化过程. 随着缓蚀剂浓度的提高, 亚稳态噪声峰的平均积分电量(q)随之递减, 但噪声峰的平均寿命几乎没有变化, 表明Ce3+并不能直接加速亚稳态蚀点的修复, 但可降低蚀点内金属Al 的溶解速率. CrO42-不但可加速蚀点修复, 还可降低亚稳态蚀点的形核速率. 8-HQ主要与Al3+、Mg2+等形成不溶性螯合物并沉积在铝合金表面,提高了铝基体的全面抗腐蚀能力, 但并不能显著提高其耐点蚀能力.  相似文献   

5.
The preparation method of a self-supporting doped-polyaniline film electrode and its open-circuit potential (OCP) in NaClO4 and Na2SO4 solutions with different pH value as well as cathodic polarization behavior have been investigated for the purpose of discussing the corrosion electrochemical behavior of polyaniline (PANI) in the acid solution. X-ray photoelectron spectroscopy (XPS) reveals that the lower pH corresponds to higher doping level of H+ in the film and a more positive OCP of PANI film electrode. OCP of the PANI film reached 0.35 V vs. SCE in 1M H2SO4, which is more positive than that of most metals, suggests that PANI would act as cathode when it couples with these metals. The cathodic polarization experiments indicate that the dominating cathodic polarization process of PANI is reversible doping and dedoping reaction and the reduction of dissolve oxygen has very little contribution to it. The potentiostatic current-time curves exhibit a large transient current density at initial stage of polarization, which should be attributed to the charge stored in the film and a relative less steady state current density at the subsequent stage of polarization, which is provided by its doping/dedoping equilibrium activity. Such a current characteristic of PANI electrode might be the force of PANI to provide the passivation protection for some active-passive metals. Published in Russian in Elektrokhimiya, 2008, Vol. 44, No. 10, pp. 1205–1212. The text was submitted by the authors in English.  相似文献   

6.
The corrosion process commonly limits the use of copper in practical applications. The use of corrosion inhibitors is one of the effective methods to reduce the corrosion rate of copper. In this research, the inhibition effect of acridine orange (3,6-bis(dimethylamine)acridine) (AcO) for the protection of copper in 0.5 ?M ?H2SO4 solution was studied. For this aim, the change of open circuit potential with exposure time (Eocp-t), electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR), anodic and cathodic potentiodynamic polarization measurements (PP) and chronoamperometry (CA) techniques were used. Some quantum chemical parameters (EHOMO, ELUMO and dipole moment) were calculated and discussed. The AcO film formed over the copper surface was examined by SEM, EDX, AFM and contact angle measurements. The electrochemical data showed that AcO is an effective corrosion inhibitor even at low concentrations (ranging between 99.1% and %99.4 ?at concentrations from 0.01 ?mM to 1 ?mM). The corrosion rate of copper decreases in the presence of the inhibitor by reducing both anodic and cathodic rates, which is depended on its concentration. This compound behaves as mixed-type corrosion inhibitors with predominantly cathodic type. Its adsorption on the copper surface obeys Langmuir adsorption isotherm. The value of adsorption equilibrium constant (Kads) and the standard free energy of adsorption were ΔGads 1.298 x 103 ?M?1 and -27.71 ?kJ/mol in the case of 0.5 ?M ?H2SO4 solution containing 1.0 ?mM AcO, which shows the adsorption is high and spontaneous. The adsorbed inhibitor film over the metal increase contact angle of the surface, which suggests the more hydrophobic properties of the surface are increasing coming from the orientation of hydrophobic sites to the electrolyte. The zero charge potential (Epzc) studies showed that the surface charge of the metal is positive in the corrosive media containing the inhibitor. Quantum chemical calculations showed that the binding of inhibitor molecules to the metal surface takes place through N atoms of the inhibitor.  相似文献   

7.
The dissolution behavior of carbon steel in ammonium chloride (NH4Cl) solution containing sodium thiosulfate (Na2S2O3) of various concentrations (0.01 and 0.1 M) was investigated using electrochemical impedance spectroscopy (EIS) and other nonelectrochemical techniques. The weight loss and polarization measurements indicate a significant increase in the NH4Cl corrosion rate of carbon steel on addition of Na2S2O3. The EIS measurements exhibited two capacitive loops at multiple direct current (dc) potentials for both the concentrations. Electrical equivalent circuit (EEC) and reaction mechanism analysis (RMA) were employed to analyze the impedance data. A four-step mechanism with two intermediate adsorbate species of same charge was proposed to explain the dissolution behavior of carbon steel in the given system. The surface coverage values enumerated that the surface was entirely covered with adsorbed species unlike in the pure NH4Cl system. Charge transfer resistance and polarization resistance values estimated from RMA parameters indicate the increase in a dissolution rate with dc potential. The surface morphology was inspected via field emission scanning electron microscopy, and the corrosion products including surface state of carbon steel electrode were analyzed using energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy.  相似文献   

8.
The corrosion resistance of AISI 420 stainless steel in 0.1 mol L?1 H2SO4 + 0.1 mol L?1 Na2SO4 solutions at different pH-values and the inhibiting effect of Ce3+ ions was studied using electrochemical polarization methods. The results reveal decreasing of the corrosion rate with an increasing the pH of the solution, which demonstrates the progressive protective character of the inhibitor used. At pH lower than 3.33, the corrosion inhibition was most probably a result of the competitive adsorption of Ce3+ with H+ ions on the cathodic sites of the electrode surface, and it was found to be dependent on the relative concentration of H+/Ce3+. The peroxide generated from the oxygen reduction reaction at pH 3.33 was found to be capable oxidize trivalent cerium (Ce) to the tetravalent state. As obtained hydroxide precipitates act as diffusion barrier hindering the corrosion processes, whereafter a spontaneous passivity occurs on the steel surface at this pH.  相似文献   

9.
It is found that the equilibrium potential of the Zn(Hg)/Zn(II) system depends on the concentration of ammonia molecules and solution pH. The dependence conforms to the literature data on the stability constants for ammonia and hydroxyammonia complexes of zinc. Their reduction on a dropping mercury electrode in solutions of pH 9.2–12 and [NH3] = 0.05–2 M yields one irreversible cathodic wave with a diffusion limiting current. In dilute supporting electrolytes, the plateau of the latter is preceded by a maximum due to accumulation of insoluble reduction products on the surface of the mercury drop. The pH and [NH3] dependences of the half-wave potential of waves that are undistorted by a maximum are analyzed with allowance made for a change in the composition of zinc(II) complexes in the bulk solution. According to the analysis, the slow two-electron electrochemical stage involves complexes Zn(NH3)2 2+ that form from complexes present in solution in preceding reversible chemical reactions. The effect the supporting-electrolyte concentration has on the electroreduction rate of zinc(II) complexes and the mechanism of the electrochemical stage is discussed.  相似文献   

10.
The initiation and propagation of filiform corrosion (FFC) on polymer-coated iron following contact with aqueous group (I) chloride salts is investigated using in situ scanning Kelvinprobe (SKP) and ex situ SIMS measurements. Prior to the onset of FFC a circular area of cathodic delamination is observed to grow radially from a penetrative coating defect. The delaminated zone is abundant in group (I) cations, whereas Cl anions are substantially excluded. As cathodic delamination slows to a halt corrosion filaments initiate at the coating defect and propagate across the delaminated zone at ca. 0.33 μm min−1. Filaments travelling beyond the delaminated zone show only a small (<20%) decrease in propagation rate. It is shown that Cl is substantially conserved in the filament-head electrolyte, whereas group (I) cations are effectively excluded. When FeCl2 is used as the initiating salt, a cathodic delamination phase is not observed but FFC occurs as before. The implications of these findings are discussed with respect to the role of cathodic delamination processes in FFC on iron.  相似文献   

11.
Electrochemical techniques were used to determine the corrosion rate of pure tin metal as compared to 80 Sn/20 Hg tin amalgam. X-ray diagrams showed that this amalgam was a crystalline γ2 phase, whereas a 50 Sn/50 Hg amalgam contained liquid alloy embedded in the same γ2 phase. Open circuit potential measurements, combined with narrow range potential scanning voltammetry, lead to the conclusion that amalgamation resulted in enhancement of the corrosion current, mainly by increasing the cathodic electron transfer reaction kinetics both in deaerated and in oxygen-saturated NaCl solution. When maintained at zero current potential in a solution containing dissolved O2 gas, the samples were gradually covered with an insulating oxide layer which was identified by a series of electrochemical impedance diagrams recorded at different time intervals. The oxide layer was firmly adherent to the bulk tin metal but was poor at protecting the amalgam electrode. Finally, at potential values where the anodic current reached a few mA/cm2, the pure tin metal surface was suddenly deteriorated by the formation of extremely deep pinhole corrosion pits, while this effect was smoothed down by amalgamation. Electronic Publication  相似文献   

12.
The effects of expired lansoprazole and rabeprazole on the corrosion protection of carbon steel in phosphoric acid (3.0 ?M) solution were examined by Tafel polarization and electrochemical impedance spectroscopy (EIS). Lansoprazole and rabeprazole concentrations (0.5, 1.0, 5.0 and 10 ?mM) in acid solution were raised, which improved corrosion prevention. Both lansoprazole and rabeprazole as the mixed inhibitors retarded the anodic and cathodic processes, as indicated by polarization data. With the increasing temperature in the range of 25–55 ?°C, the inhibition efficiency drops from 92.9% to 69.3% for lansoprazole and from 94.8% to 74.2% for rabeprazole. The major decrease in the inhibition efficiency with ascending temperature proved the physisorption of the drugs. The activation energies for carbon steel corrosion in H3PO4solution were enhanced from 41.6 ?kJ ?mol?1 to 81.9 ?kJ.mol?1and 85.9 ?kJ ?mol?1 for lansoprazole and rabeprazole, respectively. The influence of temperature on the corrosion process of carbon steel in the acid medium was used to derive the thermodynamic quantities of corrosion. The adsorption of both lansoprazole and rabeprazole on carbon steel followed the Langmuir adsorption isotherm. The polarization data yielded outcomes that were consistent with the results arising from impedance measurements. The theoretical study of both lansoprazole and rabeprazole was done by a density functional theory (DFT) approach to realize the effects of molecular structure on their inhibitive action. Both lansoprazole and rabeprazole contain a higher EHOMO, a lower ELUMO and a lower energy gap than some inhibitors earlier reported as good corrosion inhibitors in the literature.  相似文献   

13.
The corrosion and corrosion inhibition of bulk nanocrystalline ingot iron (BNII) fabricated from conventional polycrystalline ingot iron (CPII) by severe rolling was studied in 0.5 M H2SO4 solution using electrochemical impedance spectroscopy and potentiodynamic polarization techniques. The results indicate that BNII was more susceptible to corrosion in the acidic environment essentially because of an increase in the kinetics of the anodic reaction. An amino acid cysteine (cys) was employed as a corrosion inhibitor at concentrations of 0.001 and 0.005 M. Tests in inhibited solutions revealed that cys reduced the corrosion rates of both metal specimens by different mechanisms. For CPII cys inhibited the cathodic reaction but had a stimulating effect on the anodic process at low concentration and a trivial effect at higher concentration. For BNII, cys inhibited both the cathodic and the anodic reactions, although the former effect was more pronounced. Iodide ions improved the inhibitive effect of cys without altering the inhibition mechanism.  相似文献   

14.
Chemical sensors relying on graphene-based materials have been widely used for electrochemical determination of metal ions and have demonstrated excellent signal amplification. This study reports an electrochemically reduced graphene oxide (ERGO)/mercury film (HgF) nanocomposite-modified pencil graphite electrode (PGE) prepared through successive electrochemical reduction of graphene oxide (GO) sheets and an in situ plated HgF. The ERGO-PG-HgFE, in combination with dimethylglyoxime (DMG) and square-wave adsorptive cathodic stripping voltammetry (SW-AdCSV), was evaluated for the determination of Ni2+ in tap and natural river water samples. A single-step electrode pre-concentration approach was employed for the in situ Hg-film electroplating, metal-chelate complex formation, and non-electrolytic adsorption at –0.7 V. The current response due to nickel-dimethylglyoxime [Ni(II)-DMG2] complex reduction was studied as a function of experimental paratmeters including the accumulation potential, accumulation time, rotation speed, frequency and amplitude, and carefully optimized for the determination of Ni2+ at low concentration levels (μg?L?1) in pH 9.4 of 0.1 M NH3–NH4Cl buffer. The reduction peak currents were linear with the Ni2+ concentration between 2 and 16?μg?L?1. The limits of detection and quantitation were 0.120?±?0.002?µg?L?1 and 0.401?±?0.007?µg?L?1 respectively, for the determination of Ni2+ at an accumulation time of 120?s. The ERGO-PG-HgFE further demonstrated a highly selective stripping response toward Ni2+ determination compared to Co2+. The electrode was found to be sufficiently sensitive to determine metal ions in water samples at 0.1?µg?L?1, well below the World Health Organization standards.  相似文献   

15.
This study reports the preparation and characterization of gold nanoparticles deposited on amine-functioned hexagonal mesoporous silica (NH2–HSM) films and the electrocatalytic oxidation of glucose. Gold nanoparticles are fabricated by electrochemically reducing chloroauric acid on the surface of NH2–HSM film, using potential step technology. The gold nanoparticles deposited have an average diameter of 80 nm and show high electroactivity. Prussian blue film can form easily on them while cycling the potential between −0.2 and 0.6 V (vs saturated calomel electrode) in single ferricyanide solution. The gold nanoparticles loading NH2–HSM-film-coated glassy carbon electrode (Au–NH2–HSM/GCE) shows strong catalysis to the oxidation of glucose, and according to the cathodic oxidation peak at about 0.16 V, the catalytic current is about 2.5 μA mM−1. Under optimized conditions, the peak current of the cathodic oxidation peak is linear to the concentration of glucose in the range of 0.2 to 70 mM. The detection limit is estimated to be 0.1 mM. In addition, some electrochemical parameters about glucose oxidation are estimated.  相似文献   

16.
It is highly attractive but challenging to develop earth-abundant electrocatalysts for energy-saving electrolytic hydrogen generation. Herein, we report that Ni2P nanoarrays grown in situ on nickel foam (Ni2P/NF) behave as a durable high-performance non-noble-metal electrocatalyst for hydrazine oxidation reaction (HzOR) in alkaline media. The replacement of the sluggish anodic oxygen evolution reaction with such the more thermodynamically favorable HzOR enables energy-saving electrochemical hydrogen production with the use of Ni2P/NF as a bifunctional catalyst for anodic HzOR and cathodic hydrogen evolution reaction. When operated at room temperature, this two-electrode electrolytic system drives 500 mA cm−2 at a cell voltage as low as 1.0 V with strong long-term electrochemical durability and 100 % Faradaic efficiency for hydrogen evolution in 1.0 m KOH aqueous solution with 0.5 m hydrazine.  相似文献   

17.
X-ray diffraction data from a 3.5 M solution of (NH4)2SO4 and a 1.5 M solution of NH4ClO4 were examined. A model, in which NH+4 ions are eight-coordinated with the N-H2O distance 3.00–3.05 A, is consistent with experimental data, but there are insufficient reasons to prefer such a model to another in which NH+4 ions simply replace H2O molecules in the unchanged solvent structure.  相似文献   

18.
3-Alkyl-4-amino-5-mercapto-1,2,4-triazole (AAMT) has been evaluated as corrosion inhibition for iron in 0.1 M H2SO4 when the films of AAMT were self-assembled on the surface of iron. The films of AAMT inhibitor were characterized by electrochemical impedance spectroscopy, electrochemical polarization curves Results revealed that AAMT performed excellently as a corrosion inhibitor for iron in H2SO4 solution. Surface analysis was carried out using X-ray photoelectron spectroscopy and scanning electron microscope. The mechanism of adsorption was discussed using molecular simulation.  相似文献   

19.
The focus of this study consists of examining how simultaneous SR-XRD and electrochemical measurements can provide information on the effectiveness of stabilization and storage treatments of copper artefacts in aqueous solution. The electrochemical cell used here was designed for in situ, time resolved SR-XRD studies of corrosion and inhibition studies on cultural heritage materials. Key objectives of the new cell were to monitor corrosion layers on alloys with realistic metallographic structures and to obtain co-incident, time resolved, electrochemical data such as reduction measurements, oxidation measurements and corrosion potential (Ecorr) measurements. Here we present some early results from the cell. Firstly, a correlated SR-XRD and corrosion potential (Ecorr) study of the reduction of nantokite during storage in sodium sesquicarbonate, which shows that the surface chemistry continues to change after Ecorr has stabilized. Secondly, the use of X-ray data to identify specific changes occurring as a function of potential in the forced reduction of a more complex system.  相似文献   

20.
《印度化学会志》2023,100(10):101087
In this work, 2-Amino-1,3,5-triazine-4,6-dithiol (2-ATD) as novel and high efficiency corrosion inhibitor has been investigated for mild steel (MS) corrosion in 0.5 M HCl solution using electrochemical methods, scanning electron microscopy (SEM), energy disperse X-ray spectroscopy (EDX), atomic force microscopy (AFM) and quantum chemical calculation methods. Potentiodynamic polarization (PDP) curves indicate that 2-ATD is mixed type inhibitor, corrosion inhibition efficiency increased with increasing inhibitor concentration and reached its value of 96.5%. Evolution of exposure time versus corrosion behavior of 2-ATD is examined in corrosive medium. While corrosion potential (Ecorr) shifted more negative values, polarization resistances (Rp) decreased after 120 h exposure time due to the corrosion process. H2 volume is measured in uninhibited and inhibited solutions (10 mM 2-ATD) after 120 h exposure time. Very low volume (3.6 mL cm−2) of H2 is obtained on MS electrode in inhibited solution after 120 h of exposure, indicating that 2-ATD covers the entire surface against aggressive attack and retards the both anodic dissolution of MS and cathodic hydrogen evolution reactions. The adsorption process proposal is the Langmuir isotherm which is most suitable. Adsorption and thermodynamic parameters show that 2-ATD has a strong adsorption effect onto MS surface and includes mixed adsorption style (physical and chemical). Corrosion current density increases with increasing temperature and high activation energy (Ea) proves the strong adsorption of 2-ATD on the MS surface. Anti-corrosion mechanism of 2-ATD is described more detail with the potential of zero charge method. SEM, EDX and AFM analysis support the obtained results of electrochemical methods and confirm the existence of protective layer and strong adsorption of 2-ATD on the MS surface. Chronoamperometry test shows that current densities are almost constant whole experiment in the presence of organic film. Finally, quantum chemical calculation method of 2-ATD in blank solution is performed to investigate the active sites for possible attachment with MS surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号