首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 275 毫秒
1.
In this communication, a hydrogen peroxide (H2O2) sensor based on self-assembled Prussian Blue (PB) modified electrode was reported. Thin film of PB was deposited on the electrode by self-assembly process including multiple sequential adsorption of ferric ions and hexacyanoferrate ions. The as-prepared PB modified electrode displayed sufficient stability for practical sensing application. At an applied potential of ?0.05 V vs. Ag/AgCl (sat. KCl), PB modified electrode with 30 layers exhibited a linear dependence on H2O2 concentration in the range of 1 × 10?6–4 × 10?4 M (r = 0.9998) with a sensitivity of 625 mA M?1 cm?2. It was found that the sensitivity of H2O2 sensors could be well controlled by adjusting the number of deposition cycles for PB preparation. This work demonstrates the feasibility of self-assembled PB modified electrode in sensing application, and provides an effective approach to control the sensitivity of PB-based amperometric biosensors.  相似文献   

2.
We report here the enhanced sensing characteristics to H2 for a potentiometric sensor using an yttria-stabilized zirconia (YSZ) solid electrolyte and a ZnO(+ 84 wt.% Ta2O5) sensing electrode (SE) after aging at 500 °C. The emf response toward 400 ppm H2 was found to gradually increase up to − 800 mV after 40 days operation (aging) and was stabilized at this value until the 90th day. The aged and stabilized sensor exhibited highly sensitive response to H2, with minor responses toward other examined gases such as NOx and HCs. The 90% response time toward 100 ppm H2 was approximately 70 s. The H2 sensitivity of the stabilized sensor was hardly affected by changes in water vapor as well as O2 concentration, with repeatable and reproducible responses to H2.  相似文献   

3.
A novel three-dimensional (3D) electrochemical sensor was developed for highly sensitive detection of hydrogen peroxide (H2O2). Monolithic and macroporous graphene foam grown by chemical vapor deposition (CVD) served as the electrode scaffold. Using in-situ polymerized polydopamine as the linker, the 3D electrode was functionalized with thionine molecules which can efficiently mediate the reduction of H2O2 at close proximity to the electrode surface. Such stable non-enzymatic sensor is able to detect H2O2 with a wide linear range (0.4 to 660 μM), high sensitivity (169.7 μA mM 1), low detection limit (80 nM), and fast response (reaching 95% of the steady current within 3 s). Furthermore, this sensor was used for real-time detection of dynamic release of H2O2 from live cancer cells in response to a pro-inflammatory stimulant.  相似文献   

4.
Using porous cuprous oxide (Cu2O) microcubes, a simple non-enzymatic amperometric sensor for the detection of H2O2 and glucose has been fabricated. Cyclic voltammetry (CV) revealed that porous Cu2O microcubes exhibited a direct electrocatalytic activity for the reduction of H2O2 in phosphate buffer solution and the oxidation of glucose in an alkaline medium. The non-enzymatic amperometric sensor used in the detection of H2O2 with detection limit of 1.5 × 10?6 M over wide linear detection ranges up to 1.5 mM and with a high sensitivity of 50.6 μA/mM. This non-enzymatic voltammetric sensor was further utilized in detection of glucose with a detection limit of 8.0 × 10?7 M, a linear detection range up to 500 μM and with a sensitivity of ?70.8 μA/mM.  相似文献   

5.
A sensitive electrochemical method for H2O2 determination was proposed with carboxyl functionalized graphene oxide (GO-COOH) as mimetic peroxidase and 3,3′,5,5′-tetramethylbenzidine (TMB) as substrate. GO-COOH exhibited intrinsic peroxidase-like activity that could catalyze the oxidation of TMB with H2O2. The generated product exhibited a sensitive second order derivative linear sweep voltammetric reduction peak at − 0.93 V (vs. Ag/AgCl) in Britton–Robinson buffer. Under the optimal conditions the reduction peak current was proportional to H2O2 concentration in the linear range from 0.006 to 0.8 μmol L 1 with the detection limit of 1.0 nmol L 1 (3σ). This proposed method was further applied to determine H2O2 content in fresh milk samples with satisfactory results.  相似文献   

6.
Herein, we report a non-enzymatic glucose sensor field-effect transistor (FET) based on vertically-oriented zinc oxide nanorods modified with iron oxide (Fe2O3-ZNRs). Compared with ZnO-based non-enzymatic glucose sensors, which show poor sensing performances, modification of ZnO with Fe2O3 dramatically enhances the sensing behavior of the fabricated non-enzymatic FET glucose sensor due to the excellent electrocatalytic nature of Fe2O3. The fabricated non-enzymatic FET sensor showed excellent catalytic activity for glucose detection under optimized conditions with a linear range up to 18 mM, detection limits down to ~ 12 μM, excellent selectivity, good reproducibility and long-term stability. Moreover, the fabricated FET sensor detected glucose in freshly drawn mouse whole blood and serum samples. The developed FET sensor has practical applications in real samples and the solution-based synthesis process is cost effective.  相似文献   

7.
A selective detector for the improvised explosive, triacetone triperoxide is proposed. This is based on the rapid redox reaction of peroxides (hexamethylene triperoxide diamine, benzoyl peroxide, t-butyl peroxide, triacetone triperoxide and H2O2) with bromide at 55 °C. Consumption of bromide is indicative of the reduction of the R–O–O–R moiety, the appearance of Br2 was found for all except for triacetone triperoxide. The latter was found to breakdown to acetone which rapidly reacts with Br2 producing bromoacetones. The lack of Br2 production is unique to triacetone triperoxide. Double step chronoamperometry (E1 = 700 mV, E2 = 960 mV (vs. Ag/AgCl)) allows for the quantitation of bromine (Br2 + 2e? ? 2Br?) and bromide (2Br? ? Br2 + 2e?) respectively. The results yielded a detection limit of 8.5 µM for triacetone triperoxide with a sensitivity of 0.026 µA µM? 1. The detection limits of 16.3 µM and 14.9 µM were found respectively for HMTD and H2O2 based on the appearance of Bromine. These results indicate a possibility to develop a handheld sensor for TATP dermination.  相似文献   

8.
Poly-anionic deoxyribonucleic acid (DNA) was accumulated on the positively charged surface of carbon ionic liquid electrode (CILE) with N-butylpyridinium hexafluorophosphate (BPPF6) as binder, and then myoglobin (Mb) was immobilized onto the DNA film by electrostatic interaction to form Mb/DNA/CILE electrode. The direct electrochemistry of Mb was then investigated in detail. A pair of well-defined, quasi-reversible cyclic voltammetric peaks of Mb was obtained with the formal potentials (E0′) at ?0.304 V (vs. SCE) in phosphate buffer solution (PBS, pH 7.0). The Mb/DNA/CILE electrode showed excellent electrocatalytic activity to H2O2 and trichloroacetic acid (TCA) in the range of 1.0–160 μmol/L and 0.5–40.0 mmol/L, respectively. The apparent Michaelis–Menten constants (KM) toward H2O2 and TCA were calculated as 0.42 and 0.82 mmol/L. So, the DNA/CILE had potential to study other proteins.  相似文献   

9.
By control of mixed ligands with particular coordination sites, heterometallic coordination polymers, [Ln2(H2O)2Ag(C2O4)2(ina)3]n (Ln = Eu (1), Dy (2), Hina = isonicotinic acid) and {[LnAg(C2O4)(na)2]·2H2O}n (Ln = La (3), Tb (4), Hna = nicotinic acid), have been synthesized under hydrothermal conditions and characterized by elemental analysis, IR, thermogravimetric analysis (TGA), and single-crystal X-ray diffraction. These coordination polymers feature 3D pillar-layered coordination frameworks constructed from two-dimensional (2D) lanthanide–carboxylate layers and Ag(ina) or Ag(na) pillars. It is interesting that the in situ decarboxylation of pyridine-2,3-dicarboxylic acid into nicotinic acid was observed. The luminescent properties of 1 and 4 were also studied.  相似文献   

10.
Water activities in the ternary system (CaCl2 + SrCl2 + H2O) and its sub-binary system (CaCl2 + H2O) at T = 298.15 K have been elaborately measured by an isopiestic method. The data of the measured water activity were used to justify the reliability of solubility isotherms reported in the literature by correlating them with a thermodynamic Pitzer–Simonson–Clegg (PSC) model. The model parameters for representing the thermodynamic properties of the (CaCl2 + H2O) system from (0 to 11) mol  kg−1 at T = 298.15 K were determined, and the experimental water activity data in the ternary system were compared with those predicted by the parameters determined in the binary systems. Their agreement indicates that the PSC model parameters can reliably represent the properties of the ternary system. Under the assumption that the equilibrium solid phases are the pure solid phases (SrCl2  6H2O and CaCl2  6H2O)(s) or the ideal solid solution consisting of CaCl2  6H2O(s) and SrCl2  6H2O(s), the solubility isotherms were predicted and compared with experimental data from the literature. It was found that the predicted solubility isotherm agrees with experimental data over the entire concentration range at T = 298.15 K under the second assumption described above; however, it does not under the first assumption. The modeling results reveal that the solid phase in equilibrium with the aqueous solution in the ternary system is an ideal solid solution consisting of SrCl2  6H2O(s) and CaCl2  6H2O(s). Based on the theoretical calculation, the possibility of the co-saturated points between SrCl2  6H2O(s) and the solid solution (CaCl2  6H2O + SrCl2  6H2O)(s) and between CaCl2  6H2O(s) and the solid solution (CaCl2  6H2O + SrCl2  6H2O)(s), which were reported by experimental researchers, has been discussed, and the Lippann diagram of this system has been presented.  相似文献   

11.
The paper reports the three-phase (gas + aqueous liquid + hydrate) equilibrium pressure (p) versus temperature (T) data for a (O3 + O2 + CO2 + H2O) system and, for comparison, corresponding data for a (O2 + CO2 + H2O) system for the first time. These data cover the temperature range from (272 to 279) K, corresponding to pressures up to 4 MPa, for each of the three different (O3 + O2)-to-CO2 or O2-to-CO2 mole ratios in the gas phase, which are approximately 1:9, 2:8, and 3:7, respectively. The mole fraction of ozone in the gas phase of the (O3 + O2 + CO2 + H2O) system was from ∼0.004 to ∼0.02. The modified pressure-search method, developed in our previous study [S. Muromachi, T. Nakajima, R. Ohmura, Y.H. Mori, Fluid Phase Equilib. 305 (2011) 145–151] for pT measurements in the presence of chemically unstable ozone, was applied, having been further modified for dealing with highly water-soluble CO2, for the (O3 + O2 + CO2 + H2O) system, while the conventional temperature-search method was used for the (O2 + CO2 + H2O) system. The measurement uncertainties (with 95% coverage) were ±0.11 K for T, ±6.0 kPa for p, and ±0.0015 for the mole fraction of each species in the gas phase. It was confirmed that, at a given CO2 fraction in the gas phase, p for the (O3 + O2 + CO2 + H2O) system was consistently lower than that for the (O2 + CO2 + H2O) system over the entire T range of the present measurements, indicating a preference of O3 to O2 in the uptake of guest-gas molecules into the cages of a structure I hydrate.  相似文献   

12.
A promising hydrogen sulfide (H2S) sensor was prepared by electrodeposition of Au nanoclusters on glassy carbon electrode (GCE) and the surface structure was characterized by SEM and EDAX. These flower-like form Au nanoclusters, which were made up of highly dense clustering Au nanorods with an average diameter of 20 nm and length up to 80 nm, had an average size about 600 nm and uniformly distributed on the GCE surface. The electrocatalytic oxidation of H2S in gasoline was performed on this modified electrode, which had a satisfactory liner response to H2S in the range of 1–80 ppm and a detection limit of 0.45 ppm (s/n = 3). This sensor was sensitive, selective and stable.  相似文献   

13.
《Comptes Rendus Chimie》2015,18(7):758-765
The catalytic peroxidative oxidation (with H2O2) of cyclohexane in an ionic liquid (IL) using the tetracopper(II) complex [(CuL)24-O,O′,O′′,O′′′-CDC)]2·2H2O [HL = 2-(2-pyridylmethyleneamino)benzenesulfonic acid, CDC = cyclohexane-1,4-dicarboxylate] as a catalyst is reported. Significant improvements on the catalytic performance, in terms of product yield (up to 36%), TON (up to 529), reaction time, selectivity towards cyclohexanone and easy recycling (negligible loss in activity after three consecutive runs), are observed using 1-butyl-3-methylimidazolium hexafluorophosphate as the chosen IL instead of a molecular organic solvent including the commonly used acetonitrile. The catalytic behaviors in the IL and in different molecular solvents are discussed.  相似文献   

14.
Hydrogen peroxide-fuel cell (H2O2-FC) possesses a theoretical power generating efficiency of 119% much larger than hydrogen/oxygen (H2/O2)-FC (82.9%) with a thermodynamic electromotive force of 1.09 V. This communication presents the prototype of H2O2-photofuel cell (PFC) without using noble metal catalyst. The H2O2-PFC is comprised of mesoporous anatase TiO2 nanocrystalline film coated on fluorine-doped tin oxide electorode (mp-TiO2/FTO, photoanode), glassy carbon (cathode), and an aqueous electrolyte solution containing 0.1 M NaClO4 and 0.1 M H2O2. Under UV-light irradiation, the H2O2-PFC stably works, providing a short-circuit current of 0.24 mA cm 2 and an open-circuit voltage of 0.72 V at ambient temperature and pressure, while current hardly flows in the dark. Further, the PFC responds to visible-light due to the charge-transfer complex formation of H2O2 on the TiO2 surface.  相似文献   

15.
A two-stage continuous screw-kiln reactor was investigated for the production of synthesis gas (syngas) from the pyrolysis of biomass in the form of waste wood and subsequent catalytic steam reforming of the pyrolysis oils and gases. Four nickel based catalysts; NiO/Al2O3, NiO/CeO2/Al2O3, NiO/SiO2 (prepared by an incipient wetness method) and another NiO/SiO2 (prepared by a sol–gel method), were synthesized and used in the catalytic steam reforming process. Pyrolysis of the biomass at a rapid heating rate of approximately 40 °C/s, was carried out at a pyrolysis temperature of 500 °C and the second stage reforming of the evolved pyrolysis gases was carried out with a catalytic bed kept at a temperature of 760 °C. Gases were analysed using gas chromatography while the fresh and reacted catalyst was analysed by scanning electron microscopy, thermogravimetric analysis, transmission electron microscopy with energy dispersive X-ray and X-ray photoelectron spectroscopy. The reactor design was shown to be effective for the pyrolysis and catalytic steam reforming of biomass with a maximum syngas yield of 54.0 wt.% produced when the sol–gel prepared NiO/SiO2 catalyst was used, which had the highest surface area of 765 m2 g−1. The maximum H2 production of 44.4 vol.% was obtained when the NiO/Al2O3 catalyst was used.  相似文献   

16.
The important zinc borate of 2ZnO · 3B2O3 · 3H2O has been synthesized and characterized by means of chemical analysis, XRD, FT-IR, and DTA–TG techniques. The molar enthalpies of solution of H3BO3(s) in HCl · 54.561H2O, of ZnO(s) in the mixture of HCl · 54.561H2O and calculated amount of H3BO3, and of 2ZnO · 3B2O3 · 3H2O(s) in HCl · 54.604H2O were measured, respectively. With the use of the standard molar enthalpies of formation for ZnO(s), H3BO3(s), and H2O(l), the standard molar enthalpy of formation of ?(5561.7 ± 4.9) kJ · mol?1 for 2ZnO · 3B2O3 · 3H2O(s) was obtained. Thermodynamic properties of this compound were also calculated by a group contribution method.  相似文献   

17.
《Comptes Rendus Chimie》2014,17(7-8):672-680
Experimental studies on diesel soot oxidation under a wide range of conditions relevant for modern diesel engine exhaust and continuously regenerating particle trap were performed. Hence, reactivity tests were carried out in a fixed bed reactor for various temperatures and different concentrations of oxygen, NO2 and water (300–600 °C, 0–10% O2, 0–600 ppm NO2, 0–10% H2O). The soot oxidation rate was determined by measuring the concentration of CO and CO2 product gases. The parametric study shows that the overall oxidation process can be described by three parallel reactions: a direct C–NO2 reaction, a direct C–O2 reaction and a cooperative C–NO2–O2 reaction. C–NO2 and C–NO2–O2 are the main reactions for soot oxidation between 300 and 450 °C. Water vapour acts as a catalyst on the direct C–NO2 reaction. This catalytic effect decreases with the increase of temperature until 450 °C. Above 450 °C, the direct C–O2 reaction contributes to the global soot oxidation rate. Water vapour has also a catalytic effect on the direct C–O2 reaction between 450 °C and 600 °C. Above 600 °C, the direct C–O2 reaction is the only main reaction for soot oxidation. Taking into account the established reaction mechanism, a one-dimensional model of soot oxidation was proposed. The roles of NO2, O2 and H2O were considered and the kinetic constants were obtained. The suggested kinetic model may be useful for simulating the behaviour of a diesel particulate filter system during the regeneration process.  相似文献   

18.
We describe the preparation of novel poly(thionine)-Au materials, where the poly(thionine)-Au nano-network and nanowires have been synthesized in aqueous solution via the polymerization of thionine using HAuCl4 as the oxidant in a single reaction setup. The synthesis process does not require templates, nor does it require large amounts of organic solvents or electrochemical methods. The morphology of the nanocomposites can be controlled by varying the thionine/HAuCl4 ratio. The resulting poly(thionine)-Au network was used to fabricate a novel non-enzyme hydrogen peroxide (H2O2) biosensor. In pH 7.0 phosphate buffer, almost interference-free determination of H2O2 was realized at − 0.1 V versus Ag/AgCl with a linear of 1 × 10 4 to 5 × 10 2 M, a correlation coefficient of 0.998 and a response time of < 2 s. The developed biosensor showed a detection limit of 0.2 μM (S/N = 3) with very good stability, reproducibility and high selectivity.  相似文献   

19.
Chemical vapor deposition (CVD) was firstly used to simultaneously codope fluorine and boron into TiO2 nanotubes anodized Ti in C2H2O4 · 2H2O + NH4F electrolyte. F–B-codoping was successfully carried out by annealing the anodized TiO2 nanotubes through CVD, as evidenced from XPS analysis. SEM images showed that the higher the annealing temperature, the greater structure damage of F–B-codoped sample. XRD results confirmed that annealing temperature had an influence on the phase structure and boron and fluorine impurities could retard anatase–rutile phase transition. F–B-codoped samples displayed remarkably strong absorption in both UV and visible range. Under visible-light irradiation, F–B-codoped samples showed the higher Iph and catalytic activity in methyl orange photoelectrodegradation than F-doped sample and B-doped sample. This showed a convincing evidence of F–B-codoping of TiO2 had an obvious synergistic effect on the enhancement of photocurrents and photoelectrocatalytic activity.  相似文献   

20.
Silver modified Mg-Ni/diatomite materials with ratios of SiO2/Ni = 1.07 and Mg/Ni = 0.1, differing in Ag content (Ag/Ni = 0.025 and 0.1) were prepared by the precipitation–deposition method. The effects of silver presence and content on the structure, morphology, texture and H2-adsorption capacity of the obtained precursors were studied by X-ray diffraction, scanning electron microscopy, Hg-porosimetry and H2-chemisorption techniques. The catalytic performance of the corresponding catalysts in the soybean oil hydrogenation was investigated. The increase of the silver loading resulted in the development of macroporosity and increase in the total sample porosity. The decrease of both H2-adsorption capacity and hydrogenation activity are related to the metallic silver covering and blocking effects on the Ni2+ species, thus hampering the access of hydrogen. The decrease of hydrogenation activity and favorable limiting of cistrans isomerization on the silver modified catalyst are explained by Horiuti–Polanyi mechanism based on the assumption that hydrogenation and isomerization proceed at the same active metallic nickel sites via half-hydrogenated intermediates.It was shown that the adjustment of the catalyst composition by changing the content of silver modifier offers the possibility to control the total amount of solid fat content, stearic acid and detrimental trans fatty acids in the hydrogenated derivatives. The catalyst with higher silver content is proposed as a promising candidate for selective edible oil hydrogenation catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号