首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
何正文  江奇  杨荣  亓鹏  赵斐  袁华  赵勇 《物理化学学报》2010,26(5):1214-1218
利用直流电电化学沉积法将生长碳纳米管(CNT)的催化剂镍均匀地附着在石墨电极(GE)表面,再通过化学气相沉积法制备得到原位生长碳纳米管化学修饰电极(GSCNT-CME).电化学沉积的金属镍和所制备的修饰电极分别用光学显微镜、扫描电子显微镜(SEM)和电子能谱(EDX)进行表征,所得修饰电极的电化学性能用[Fe(CN)6]3-/[Fe(CN)6]4-溶液进行表征.结果表明:经直流电电化学沉积,可以在石墨电极表面沉积一层致密的金属镍,能生长出管径均匀的碳纳米管,所制得的修饰电极具有良好的电化学响应灵敏性和准确性,可在电化学检测领域发挥重要的应用.  相似文献   

2.
Phthaloylchitosan (PHCS) has been synthesized by a simple and low-cost method using chitosan and phthalic anhydride as organic precursors by microwave irradiation. Techniques of nuclear magnetic resonance (NMR), FT-IR spectroscopy and transmission electron microscope (TEM) were used to characterize the structure and properties of the Phthaloylchitosan. Moreover, glassy carbon electrode modified with Phthaloylchitosan and carbon nanotube (PHCS–CNT/GCE) was prepared by casting of the PHCS–CNT solution on GCE. The electrochemical behavior of PHCS–CNT/GCE was investigated and compared with the electrochemical behavior of Phthaloylchitosan modified GC (PHCS/GC), carbon nanotube modified GC (CNT/GC) and unmodified GC using cyclic voltammetry (CV). The Phthaloylchitosan film is electrochemically inactive; similar background charging currents are observed at bare GC. Electrochemical parameters, including apparent diffusion coefficient for the Fe(CN)63-/4- redox probe at PHCS–CNT/GCE is comparable to values reported for GCE, CNT/GCE and PHCS/GCE. The PHCS–CNT/GCE sensor responded linearly to tyrosine (Tyr) in the concentration of 1.0 × 10–6 to 8.0 × 10–4 M with detection limit of 3.0 × 10–7 M at 3σ using amperometry. In addition, the PHCS–CNT/GCE displayed good reproducibility, high sensitivity and good selectivity towards the determination of Tyr, making it suitable for the determination of Tyr in clinical and medicine.  相似文献   

3.
Sulfur-bridged calixthiophene formed a self-assembled mono-molecular layer on polycrystalline gold, and it regulated an electrochemical electron transfer by the host–guest interaction between the cavity and reactants. 1,7,13,19,25-Tetrathia[1.5](2,5)thiophenophane (thiacalix[5]thiophene) perfectly passivated the gold electrode for relatively large reversible metal complexes: [Fe(CN)6]4−/3− and [IrCl6]3−/2−. However, for mono-atomic ions, such as silver and some of the halogen ions, the electrode behaved reversibly. For copper reduction, a large activation overpotential was observed to induce an initial copper reduction in the cavity.  相似文献   

4.
通过简单的原位化学合成法结合离子交换法制备了Cu修饰氮掺杂碳(Cu-N-C)和Fe/Cu修饰氮掺杂碳纳米管(Fe/Cu-N-C/CNT),并系统评估了2种催化剂作为染料敏化太阳能电池(dye-sensitized solar cells,DSSCs)对电极在I3-/I-体系中的电化学特性和光伏性能。采用X射线衍射(XRD)、拉曼(Raman)、X射线光电子能谱(XPS)和场发射扫描电镜(FESEM)对合成的催化剂进行组分和形貌表征。结果表明:纳米管状的Fe/Cu-N-C/CNT的石墨化程度比纳米颗粒状的Cu-N-C更高,更有利于I3-还原反应中电荷的传输。光伏性能测试结果表明:基于Fe/Cu-N-C/CNT对电极的DSSCs的光电能量转换效率(power conversion efficiency,PCE)达到7.55%,高于相同测试条件下Cu-N-C(6.99%)和Pt(6.76%)对电极的PCE。50圈连续循环伏安测试结果表明:Fe/Cu-N-C/CNT催化剂具有比Cu-N-C更好的电化学稳定性。  相似文献   

5.
Glassy carbon electrodes (GCEs) modified with sulfur-doped graphene (SG)/carboxylated carbon nanotube (CNT−COOH)/MoS2/yeast composite were prepared for electrochemical detection for lead ions by the simple hydrothermal methods and ultrasonic methods. The combination of SG and CNT−COOH could form a double-layer carbon structure, providing more active detection sites for detection for lead, which could also contribute to adherence of yeast and MoS2. The SG/CNT−COOH/MoS2/yeast exhibited a high response in detecting low concentrations of lead ions. And then the SG/CNT−COOH/MoS2/yeast was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Transmission electron microscope (TEM), Scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Compared with traditional detection technology, the linear range of the sensor was 10−6∼10−14 g/L. And the lower of detection (LOD) down to 2.61×10−15 g/L was achieved. The sensor showed prospective applications in detection of Pb2+ in real serum samples.  相似文献   

6.
Aqueous redox flow batteries (ARFBs) are a promising technology for grid-scale energy storage, however, their commercial success relies on redox-active materials (RAM) with high electron storage capacity and cost competitiveness. Herein, a redox-active material lithium ferrocyanide (Li4[Fe(CN)6]) is designed. Li+ ions not only greatly boost the solubility of [Fe(CN)6]4− to 2.32 M at room temperature due to weak intermolecular interactions, but also improves the electrochemical performance of [Fe(CN)6]4−/3−. By coupling with Zn, ZIRFBs were built, and the capacity of the batteries was as high as 61.64 Ah L−1 (pH-neutral) and 56.28 Ah L−1 (alkaline) at a [Fe(CN)6]4− concentration of 2.30 M and 2.10 M. These represent unprecedentedly high [Fe(CN)6]4− concentrations and battery energy densities reported to date. Moreover, benefiting from the low cost of Li4[Fe(CN)6], the overall chemical cost of alkaline ZIRFB is as low as $11 per kWh, which is one-twentieth that of the state-of-the-art VFB ($211.54 per kWh). This work breaks through the limitations of traditional electrolyte composition optimization and will strongly promote the development of economical [Fe(CN)6]4−/3−-based RFBs in the future.  相似文献   

7.
Porous boron-doped diamond (p-BDD) electrodes of high-surface-area have been prepared on vertically aligned carbon nanotube substrates, and their electrochemical performance has demonstrated promising results for application in electroanalysis. The electrochemical features of the p-BDD electrodes were investigated and compared with those of a conventional flat BDD electrode (f-BDD). From cyclic voltammetry studies performed for the electrochemical probes [Fe(CN)6]3? and N,N,N′,N′-tetramethyl-para-phenylenediamine (TMPD), a fast charge transfer was observed at the p-BDD/electrolyte interface. For the [Fe(CN)6]3? redox probe, the heterogeneous electron-transfer rate constant (k 0) value obtained for p-BDD was 10.9 times higher than that obtained using a f-BDD electrode. Moreover, the p-BDD electrodes also gave a smaller peak potential separation, ΔE p, and larger analytical signal magnitude for different biomolecules, such as dopamine (DA), acetaminophen (AC), and epinephrine (EP). These set of results demonstrated that the p-BDD electrode is a suitable candidate for applications in electroanalytical chemistry.  相似文献   

8.
Prussian blue/carbon nanotube (PB/CNT) hybrids with excellent dispersibility in aqueous solutions were synthesized by adding CNTs to an acidic solution of Fe3+, [Fe(CN)6]3? and KCl. Fourier transform infrared spectroscopy, UV‐vis absorption spectroscopy and scanning electron microscopy were employed to confirm the formation of PB/CNT hybrids. The PB nanoparticles formed on the CNT surfaces exhibit a narrow size distribution and an average size of 40 nm. The present results demonstrate that the selective reduction of Fe3+ to Fe2+ by CNTs is the key step for PB/CNT hybrid formation. The subsequent fabrication of the PB/CNT hybrid films was achieved by layer‐by‐layer technique. The thus‐prepared PB/CNT hybrid films exhibit electrocatalytic activity towards H2O2 reduction.  相似文献   

9.
A carbon nanotube (CNT)‐modified electrode was fabricated by dropping a dispersion of multi‐walled CNTs in water‐soluble and amphiphilic phospholipid polymer with both dispersing ability and anti‐biofouling property onto a Au electrode. A poly(2‐methacryloyloxyethyl phosphorylcholine‐co‐n‐butyl methacrylate) (PMB) composed from 50 mol% of 2‐methacryloxylethyl phosphorylcholine and 50 mol% of n‐butyl methacrylate (PMB50) was used as dispersing reagent for CNTs. The dispersion of water‐insoluble material by PMB50 and its antifouling effects in electrochemical analysis were investigated. The CNT‐modified electrode showed an anodic peak potential that was shifted negatively and an increase in the current value for the electrolytic oxidation of nicotinamide adenine dinucleotide. In addition, the charge on PMB50 did not inhibit the electrochemical reaction of the redox compounds K3[Fe(CN)6], [Ru(NH3)6]Cl3, and hydroxymethylferrocene. Cyclic voltammetry of K3[Fe(CN)6] in 4 % bovine serum albumin (BSA) using a bare Au electrode, the anodic peak current was reduced to 47 % of that without BSA. In contrast, the antifouling effect of the PMB50‐coated electrode meant that the current was only reduced to 70 % of that without BSA.  相似文献   

10.
In this study, we modified carbon nanotubes (CNTs) by grafting with poly(ethylene glycol) (PEG) using the “grafting to” method. The PEG-grafted CNT (CNT-g-PEG) was cast on indium tin oxide (ITO) electrode to investigate the electrocatalytic activity of CNT to the redox reactions of the Fe(CN)63−/4−as a probe using cyclic voltammetry and electrochemical impedance spectroscopy. The electrocatalytic activity of CNT was correlated with CNT dispersion in the cast film on ITO as a function of pH of aqueous solution from which the film was cast. The CNT dispersions in aqueous solutions of different pH and in the cast films were examined by visual observation and zeta potential, scanning electron microscopy and transmission electron microscopy, respectively. At a pH in the range of 3–11 at which ITO electrode was modified, two functionalized CNT (fCNT and CNT-g-PEG) were both found to electrocatalyze the redox reactions of the Fe(CN)63−/4−probe and the PEG grafts in CNT-g-PEG could help CNT adhere to the electrode to obtain durable modified electrode. The more uniform CNT dispersions in aqueous solutions and in the cast films appeared to have greater electrocatalytic acitivity.  相似文献   

11.
A new hemoglobin (Hb) and carbon nanotube (CNT) modified carbon paste electrode was fabricated by simply mixing the Hb, CNT with carbon powder and liquid paraffin homogeneously. To prevent the leakage of Hb from the electrode surface, a Nafion film was further applied on the surface of the Hb‐CNT composite paste electrode. The modified electrode was characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Direct electrochemistry of hemoglobin in this paste electrode was easily achieved and a pair of well‐defined quasi‐reversible redox peaks of a heme Fe(III)/Fe(II) couple appeared with a formal potential (E0′) of ?0.441 V (vs. SCE) in pH 7.0 phosphate buffer solution (PBS). The electrochemical behaviors of Hb in the composite electrode were carefully studied. The fabricated modified bioelectrode showed good electrocatalytic ability for reduction of H2O2 and trichloroacetic acid (TCA), which shows potential applications in third generation biosensors.  相似文献   

12.
Novel films consist of multi-walled carbon nanotubes (MWCNT) were fabricated by means of catalytic chemical vapor deposition (CVD) technique with decomposition of either acetonitrile (ACN) or benzene (BZ) using ferrocene (FeCp2) as catalyst. The electrochemical and thermodynamic behavior of the ferrocyanide/ferricyanide, [Fe(CN)6]3−/4− redox couple on synthesized MWCNT-based films was investigated by means of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques at T = (278.15, 283.15, 293.15, and 303.15) K. The redox couple [Fe(CN)6]3−/4− behaves quasi-reversibly on fabricated MWCNT-based films and its reversibility is enhanced upon increasing temperature. Namely, the findings establish that with the rise in temperature the barrier for interfacial electron transfer decreases, leading, consequently, to an enhancement of the kinetics of the charge transfer process. According to thermodynamics the equilibrium of the redox process is shifted towards the formation of [Fe(CN)6]3− at elevated temperatures.  相似文献   

13.
《Electroanalysis》2018,30(9):2160-2166
The present study focuses on designing and fabricating an electrochemical aptasensor for the label free detection of bisphenol A (BPA) using gold nanoparticles (Au NPs) immobilized on functional cupper magnetic nanoparticles (CuFe2O4‐SH) and multiwall carbon nanotubes (MWCNTs) modified with aptamer and 6‐mercapto‐1‐hexanol (MCH). A number of analysis techniques were used to characterize the nanocomposite, including Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometer, elemental mapping analysis and energy dispersive x‐ray diffraction. The results of the analyses revealed that the fabricated aptasensor had an acceptable linearity index (0.05‐9 nM) with an ultralow detection limit (25.2 pM) when used to determine BPA. Electrochemical experiments were conducted using a [Fe(CN)6]3−/[Fe(CN)6]4− redox system. The results of the electrochemical tests indicated that the existence of Au NPs along with magnetic nanoparticles and MWCNTs in nanocomposite led to a synergistic augmentation on the surface of the modified electrode, thus facilitating the efficient sensing of BPA. This method is highly selective, sensitive and environmentally friendly. Moreover, proposed aptasensor has valuable potential applications in medical diagnostics and food industries where a fast and reliable detection of BPA is of paramount importance for the health of the public.  相似文献   

14.
A non-enzymatic impedimetric glucose sensor was fabricated based on the adsorption of gold nanoparticles (GNPs) onto conductive polyaniline (PANI)-modified glassy carbon electrode (GCE). The modified electrode (GCE/PANI/GNPs) was characterized by using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). The determination of glucose concentration was based on the measurement of EIS with the mediation of electron transfer by ferricyanide ([Fe(CN)6]3?). The [Fe(CN)6]3? is reduced to ferrocyanide ([Fe(CN)6]4?), which in turn is oxidized at GCE/PANI/GNPs. An increase in the glucose concentration results in an increase in the diffusion current density of the [Fe(CN)6]4? oxidation, which corresponds to a decrease in the faradaic charge transfer resistance (R ct). A wide linear concentration range from 0.3 to 10 mM with a lower detection limit of 0.1 mM for glucose was obtained. The proposed sensor shows high sensitivity, good reproducibility, and stability. In addition, the sensor exhibits no interference from common interfering substances such as ascorbic acid, acetaminophen, and uric acid.  相似文献   

15.
An electrochemical DNA sensing film was constructed based on the multilayers comprising of poly‐L ‐lysine (pLys) and Au‐carbon nanotube (Au‐CNT) hybrid. A precursor film of mercaptopropionic acid (MPA) was firstly self‐assembled on the Au electrode surface. pLys and Au‐CNT hybrid layer‐by‐layer assembly films were fabricated by alternately immersing the MPA‐modified electrode into the pLys solution and Au‐CNT hybrid solution. Cyclic voltammetry was used to monitor the consecutive growth of the multilayer films by utilizing [Fe(CN)6]3?/4? and [Co(phen)3]3+/2+ as the redox indicators. The outer layer of the multilayer film was the positively charged pLys, on which the DNA probe was easily linked due to the strong electrostatic affinity. The hybridization detection of DNA was accomplished by using methylene blue (MB) as the indicator, which possesses different affinities to dsDNA and ssDNA. Differential pulse voltammetry was employed to record the signal response of MB and determine the amount of the target DNA sequence. The established biosensor has high sensitivity, a relatively wide linear range from 1.0×10?10 mol/L to 1.0×10?6 mol/L and the ability to discriminate the fully complementary target DNA from single or double base‐mismatched DNA. The sequence‐specific DNA related to phosphinothricin acetyltransferase gene from the transgenically modified plants was successfully detected.  相似文献   

16.
Gold 3D cylindrical nanoelectrode ensembles (NEEs), 100 nm in diameter and 500 nm in length were prepared by electroless template synthesis in polycarbonate filter membranes, followed by selective controlled chemical etching. The morphology of the nanowires and cylindrical NEEs was imaged by scanning electron microscopy. The protruding nanoelectrodes were in good parallel order. EDX study showed that the nanoelectrode elements consisted of pure gold. The electrochemical evaluation of the 3D electrodes was conducted using the well known [Fe(CN)6]^3-/[Fe(CN)6]^4- couple. Cyclic voltammgrams (CV) show a very low double layer charging current and a higher ratio of signal to background current than 2D disc NEEs. Electrochemical impedance spectroscopy (EIS) indicates that the 3D cylindrical NEEs effectively accelerate the charge transfer process, which is in consistent with the results of CV. The linear relationship with a slope of 0.5 between lg Ipc and lg v shows that linear diffusion is dominant on the 3D cylindrical NEEs at conventional scan rates.  相似文献   

17.
We have developed a molecularly imprinted polymer (MIP) electrochemical sensor for entacapone (ETC) based on an electropolymerised polyphenylenediamine (Po-PD) on a glassy carbon electrode (GCE) surface. The direct electropolymerisation of the o-phenylenediamine monomer (o-PD) was carried out with ETC as a template. The steps of electropolymerization process, template removal and binding of the analyte were tested by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) using [Fe(CN)6]3−/[Fe(CN)6]4 − as a redox probe. The operation of the sensor has been investigated by differential pulse voltammetry (DPV). Under optimal experimental conditions, the response of the DPV was linearly proportional to the ETC concentration between 1.0×10−7 and 5.0×10−6 M ETC with a limit of detection (LOD) of 5.0×10−8 M. The developed sensor had excellent selectivity without detectable cross-reactivity for levodopa and carbidopa. The MIP sensor was successfully used to detect ETC in spiked human serum samples.  相似文献   

18.
In the present paper, we used single-stranded poly-T (100% thymine bases) and poly-C (100% cytosine bases) nucleic acids as DNA probes for selective and sensitive individual electrochemical determination of Hg2+ and Ag+, respectively, on the multi-walled carbon nanotube paste electrodes (MWCNTPEs) using [Fe(CN)6]3?/4? as electroactive labels. In the presence of Hg2+ and Ag+, the probe–Hg2+/Ag+ interactions through T–Hg2+–T and C–Ag+–C complexes formation could cause the formation of a unimolecular hybridized probe. This structure of probe led to its partial depletion from electrode surface and facilitation of electron transfer between [Fe(CN)6]3?/4? redox couple and electrode surface, resulting in the enhanced differential pulse voltammetry (DPV) oxidation current of [Fe(CN)6]3?/4? at the probe-modified electrode surface. We applied the difference in the oxidation peak currents of [Fe(CN)6]3?/4? before and after Hg2+/Ag+–DNA probe bonding (?I) for electrochemical determination of these heavy metal ions. Detection limits were 8.0?×?10?12 M and 1.0?×?10?11 M for Hg2+ and Ag+ ions determination, respectively. The biosensors were utilized to determine the weight percent of toxic metals, i.e., silver and mercury in dental amalgam filling composition. The results of their practical applicability in analysis of the amalgam sample were satisfactory.  相似文献   

19.
《Electroanalysis》2018,30(1):31-37
The electrochemical detection of alpha‐feto protein based on novel gold nanoparticles‐ poly(propylene imine) dendrimer platform is reported. The platform was prepared by co‐electrodeposition of gold nanoparticles and generation 3 poly (propylene imine) dendrimer on a glassy carbon electrode. Each modifying step was characterised by cyclic voltammetry and electrochemical impedance spectroscopy. The electrochemical measurements showed that the platform was stable, conducting and exhibited reversible electrochemistry. Results obtained from the electrochemical impedance spectroscopy interrogation in [Fe(CN)63−/4−] redox probe showed a marked reduction in charge transfer resistance (Rct) after each modification step. The immunosensor was prepared by immobilisation of a probe anti‐alpha feto protein (AFP) on the platform for 3 hrs at 35 °C followed by blocking the surface with bovine serum albumin to minimise non‐specific binding. The prepared immunosensor was used to detect AFP over a wide concentration range from 0.005 to 500 ng/mL and detection limits of 0.0022 and 0.00185 ng/mL were obtained for SWV and EIS measurements respectively. The immunosensor gave good stability over a period of fourteen days when stored at 4 °C.  相似文献   

20.
Baozhen Wang 《Talanta》2007,72(2):415-418
Multilayer thin films composed of poly(allylamine hydrochloride) (PAH) and carboxymethyl cellulose (CMC) have been prepared on the surface of a gold (Au) disk electrode by a layer-by-layer deposition of PAH and CMC and ferricyanide ions ([Fe(CN)6]3−) were confined in the film. [Fe(CN)6]3− ions can be successfully confined in the films from weakly acidic or neutral [Fe(CN)6]3− solutions, while, in basic solution, [Fe(CN)6]3− ion was not confined. The [Fe(CN)6]3− ion-confined Au electrode showed clear redox peaks in the cyclic voltammogram around 0.35 V versus Ag/AgCl. The amounts of [Fe(CN)6]3− ions confined in the films depended on the thickness of the films or the number of layers in the LbL films. The [Fe(CN)6]3− ion-confined Au electrode was used for electrocatalytic determination of ascorbic acid in the concentration range of 1-50 mM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号