共查询到20条相似文献,搜索用时 9 毫秒
1.
Lee Hyein Kim Young Jun Sohn Youngku Rhee Choong Kyun 《Journal of Solid State Electrochemistry》2020,24(10):2535-2542
Journal of Solid State Electrochemistry - Presented in this work is an investigation of co-deposits of Pt and Bi on Au disk (Pt-Bi/Au) toward formic acid oxidation (FAO) using voltammetry and X-ray... 相似文献
2.
Byung-Kwon Kim Daeha Seo Ji Young Lee Hyunjoon Song Juhyoun Kwak 《Electrochemistry communications》2010,12(10):1442-1445
Pd nanoparticles (NPs) were directly deposited on indium-tin oxide (ITO) electrodes by cyclic voltammetry (CV) in a bulk Pd2+ solution and the size of the Pd (NPs) was evaluated by SEM. The electrochemical deposition conditions of the Pd NPs were varied according to a scan rate. As the scan rate was decreased, the size of the Pd NPs increased, but the formic acid catalytic property was weakened. With regard to cycle number, with increased cycling, the size of the Pd NPs increased but the formic acid catalytic property decreased. As the conditions of electrochemical deposition were varied, the particle size and catalytic activity for formic acid were also changed. 相似文献
3.
Kim J Jung C Rhee CK Lim TH 《Langmuir : the ACS journal of surfaces and colloids》2007,23(21):10831-10836
This work presents characteristics of Pt deposits on Au(111) obtained by the use of spontaneous deposition and investigated by electrochemical scanning tunneling microscopy (EC-STM). On such prepared and STM characterized Au(111)/Pt surfaces, we studied electrocatalytic oxidation of formic acid and methanol. We show that the first monatomic layer of Pt displays a (square root 3 x square root 3)R30 degrees surface structure, while the second layer is (1 x 1). After prolonged deposition, multilayer Pt deposits are formed selectively on Au(111) surface steps and are 1-20 nm wide and one to five layers thick. On the optimized Au(111)/Pt surface, formic acid oxidation rates are enhanced by a factor of 20 compared to those of pure Pt(111). The (square root 3 x square root 3)R30 degrees-Pt yields very low methanol oxidation rates, but the rates increase significantly with further Pt growth. 相似文献
4.
《Electrochemistry communications》2007,9(5):1145-1153
Conducting polymer composite films comprised of polypyrrole (PPy) and multiwalled carbon nanotubes (MWCNTs) [PPy–CNT] were synthesized by in situ polymerization of pyrrole on carbon nanotubes in 0.1 M HCl containing (NH4)S2O8 as oxidizing agent over a temperature range of 0–5 °C. Pt nanoparticles are deposited on PPy–CNT composite films by chemical reduction of H2PtCl6 using HCHO as reducing agent at pH = 11 [Pt/PPy–CNT]. The presence of MWCNTs leads to higher activity, which might be due to the increase of electrochemically accessible surface areas, electronic conductivity and easier charge-transfer at polymer/electrolyte interfaces allowing higher dispersion and utilization of the deposited Pt nanoparticles. A comparative investigation was carried out using Pt–Ru nanoparticles decorated PPy–CNT composites. Cyclic voltammetry demonstrated that the synthesized Pt–Ru/PPy–CNT catalysts exhibited higher catalytic activity for methanol oxidation than Pt/PPy–CNT catalyst. Such kinds of Pt and Pt–Ru particles deposited on PPy–CNT composite polymer films exhibit excellent catalytic activity and stability towards methanol oxidation, which indicates that the composite films is more promising support material for fuel cell applications. 相似文献
5.
Compared to Pt or Pd electrodes, Au is a poor catalyst for the direct anodic oxidation of HCOOH, but the formation of Au surface oxides in acidic solutions is accompanied by a fast oxidation of HCOOH. This fast reaction is not simply a secondary reaction of Au surface oxides since those oxides are kinetically stable in HCOOH solutions. They do oxidize HCOOH only via a slow and purely electrochemical process which occurs on free Au sites and is “driven” by oxide reduction. The fast HCOOH oxidation is due to a highly reactive intermediate which is able either to form stable Au oxides AunOm or to react with HCOOH. Our results are consistent with the model that by the charge transfer step a reactive non-equilibrium {Au…O> species is formed which converts to stable equilibrium oxides AunOm after migration and rearrangement steps. Pre-equilibrium <Au…O> oxidizes HCOOH and this oxidation is of lower order with respect to <Au…O> compared with the formation of AunOm. 相似文献
6.
Enhanced electrocatalytic activity of Cu-modified,high-index single Pt NPs for formic acid oxidation
A key goal of nanoparticle-based catalysis research is to correlate the structure of nanoparticles (NPs) to their catalytic function. The most common approach for achieving this goal is to synthesize ensembles of NPs, characterize the ensemble, and then evaluate its catalytic properties. This approach is effective, but it excludes the certainty of structural heterogeneity in the NP ensemble. One means of addressing this shortcoming is to carry out analyses on individual NPs. This approach makes it possible to establish direct correlations between structures of single NPs and, in the case reported here, their electrocatalytic properties. Accordingly, we report on enhanced electrocatalytic formic acid oxidation (FAO) activity using individual Cu-modified, high-indexed Pt NPs. The results show that the Cu-modified Pt NPs exhibit significantly higher currents for FAO than the Pt-only analogs. The increased activity is enabled by the Cu submonolayer on the highly stepped Pt surface, which enhances the direct FAO pathway but not the indirect pathway which proceeds via surface-absorbed CO*.Single-crystal Pt nanoparticles with a diameter of ∼200 nm were electrosynthesized, covered with a single monolayer of Cu, and then fully characterized. The resulting materials exhibit excellent electrocatalytic properties for formic acid oxidation. 相似文献
7.
Pt and Au nanoparticles with controlled Pt?:?Au molar ratios and PtAu nanoparticle loadings were successfully self-assembled onto poly(diallyldimethylammonium chloride) (PDDA)-functionalized graphene (PDDA-G) as highly effective electrocatalysts for formic acid oxidation in direct formic acid fuel cells (DFAFCs). The simultaneously assembled Pt and Au nanoparticles on PDDA-G showed superb electrocatalytic activity for HCOOH oxidation, and the current density associated with the preferred dehydrogenation pathway for the direct formation of CO(2) through HCOOH oxidation on a Pt(1)Au(8)/PDDA-G (i.e., a Pt?:?Au ratio of 1?:?8) is 32 times higher than on monometallic Pt/PDDA-G. The main function of the Au in the mixed Pt and Au nanoparticles on PDDA-G is to facilitate the first electron transfer from HCOOH to HCOO(ads) and the effective spillover of HCOO(ads) from Au to Pt nanoparticles, where HCOO(ads) is further oxidized to CO(2). The Pt?:?Au molar ratio and PtAu nanoparticle loading on PDDA-G supports are the two critical factors to achieve excellent electrocatalytic activity of PtAu/PDDA-G catalysts for the HCOOH oxidation reactions. 相似文献
8.
Zhou ZY Ren J Kang X Song Y Sun SG Chen S 《Physical chemistry chemical physics : PCCP》2012,14(4):1412-1417
Butylphenyl-functionalized Pt nanoparticles (Pt-BP) with an average core diameter of 2.93 ± 0.49 nm were synthesized by the co-reduction of butylphenyl diazonium salt and H(2)PtCl(4). Cyclic voltammetric studies of the Pt-BP nanoparticles showed a much less pronounced hysteresis between the oxidation currents of formic acid in the forward and reverse scans, as compared to that on naked Pt surfaces. Electrochemical in situ FTIR studies confirmed that no adsorbed CO, a poisoning intermediate, was generated on the Pt-BP nanoparticle surface. These results suggest that functionalization of the Pt nanoparticles by butylphenyl fragments effectively blocked the CO poisoning pathway, most probably through third-body effects, and hence led to an apparent improvement of the electrocatalytic activity in formic acid oxidation. 相似文献
9.
Highly efficient submonolayer Pt-decorated Au nano-catalysts for formic acid oxidation 总被引:1,自引:0,他引:1
A novel structure of catalyst, submonolayer Pt-decorated Au, has been synthesized with minimal use of Pt and shows markedly improved activity toward formic acid oxidation where it facilitates the direct oxidation of formic acid by suppressing the formation of poisonous species COads via the "ensemble" effect. 相似文献
10.
Gojković SLj Tripković AV Stevanović RM Krstajić NV 《Langmuir : the ACS journal of surfaces and colloids》2007,23(25):12760-12764
Surface processes on Pt4Mo alloy well-defined by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were studied in acid solution by cyclic voltammetry. It was established that Mo in the alloy is much more resistant toward electrochemical dissolution than pure Mo. During the potential cycling of Pt4Mo surfaces in completely quiescent electrolyte, hydrous Mo-oxide could be generated on Mo sites. Investigation of the formic acid oxidation revealed that this type of Mo-oxide enhances the reaction rate by more than 1 order of magnitude with respect to pure Pt. Surface poisoning by CO(ads) is significantly lower on Pt4Mo alloy than on pure Pt. The effect of hydrous Mo-oxide on the HCOOH oxidation rate was explained through the facilitated removal of the poisoning species and through its possible influence on the intrinsic rate of the direct reaction path. 相似文献
11.
《Electrochemistry communications》2007,9(7):1513-1518
Novel titanium-supported nanoporous network bimetallic Pt–Ir/Ti electrocatalysts (S1:Pt59Ir41/Ti, S2:Pt44Ir56/Ti, S3:Pt22Ir78/Ti) have been successfully fabricated by the hydrothermal process. The nanoparticles of Pt and Ir were deposited on the titanium substrates in the presence of formaldehyde as a reduction agent. The electrocatalytic activity of these electrocatalysts towards formic acid oxidation in 0.5 M H2SO4 + 0.5 M HCOOH solutions was investigated using cyclic voltammograms (CVs), linear sweep voltammograms (LSVs), chrono amperometry and electrochemical impedance spectroscopy (EIS). The CVs of S1, S2 and S3 exhibit two anodic peaks in the forward scan and one anodic peak in the reverse scan which are similar to the pure Pt. Their LSVs show that the three samples present significantly high current densities of formic acid oxidation compared to the Pt electrode. It is observed from the chrono amperometric measurements at potential 600 mV that the sample S2 delivers a steady-state current density that is 545 times larger than that for the pure Pt electrode. EIS analysis shows that the impedances on both the imaginary and real axes of S1, S2 and S3 are much lower than those of the pure Pt. Among the three samples (S1, S2 and S3), S2 exhibits the highest electrocatalytic activity towards the formic acid oxidation. 相似文献
12.
《Electrochemistry communications》2007,9(6):1298-1304
Nanostructured Pd thin films are directly formed on polycrystalline Pt and Au substrates in the absence of hard and soft templates by using a cyclic potential sweep technique, which is confirmed by both SEM observation and their unusual cyclic voltammetric characteristics in H2SO4 solution. Interestingly, the bimetallic electrodes obtained after the deposition of ultrathin Pd films onto Pt and Au substrates display much higher catalytic activity towards the electro-oxidation of methanol than the bulk Pt electrode. Besides, it is found that the foreign metal substrate has great influence on the electro-catalytic behavior of the Pd films. 相似文献
13.
The physical dimensions of ensemble structures formed by adsorbed Bi on Pt(111) were estimated and correlations were established between ensemble size and oxidation activity. Measurements were made by examining electrochemical scanning tunneling microscopy (EC-STM) images of Bi irreversibly adsorbed on Pt(111). Percentage coverages of Bi, CO, poison, and ensemble were determined by both EC-STM and cyclic voltammetry. As the fractional Bi coverage increased, from 0.03 to 0.21, the ensemble size decreased, from approximately 9 to 1 nm. Poison formation was inhibited at ensemble sizes less than 2 nm and the turnover frequency of formic acid was enhanced by a factor of 100–200. Bi is hypothesized to not only physically produce the ensembles, but may also chemically alter their electronic properties. 相似文献
14.
We demonstrate the synthesis of monodisperse, heterostructured Pt-Ru nanocrystals with a novel core-shell structure by a one-step method. The Pt-Ru nanocrystals show excellent electrocatalytic activity towards formic acid oxidation. Such core-shell structured Pt-Ru nanocrystals are potential candidates as anode catalysts in fuel cells. 相似文献
15.
Stochastic resonance (SR) is shown in a two-parameter system, a model of electrochemical oxidation of formic acid on Pt. The driving current and the saturation coverage for carbon monoxide are two control parameters in this model. Modulation of an excitable focal stable state close to a Hopf bifurcation by a weak periodic signal in one parameter and noise in the other parameter is found to give rise to SR. The results indicate that the noise can enlarge a weak periodic signal and lead the system to be ordered. The scenario and novel aspects of SR in this system are discussed. 相似文献
16.
Binary Pt/Pd nanoparticles were synthesized by localized overgrowth of Pd on cubic Pt seeds for the investigation of electrocatalytic formic acid oxidation. The binary particles exhibited much less self-poisoning and a lower activation energy relative to Pt nanocubes, consistent with the single crystal study. 相似文献
17.
《Arabian Journal of Chemistry》2022,15(8):103965
This study aims to mitigate the CO poisoning of platinum (Pt) surfaces during formic acid electro-oxidation (FAEO), the essential anodic reaction in the direct formic acid fuel cells (DFAFCs). For this purpose, a glassy carbon (GC) electrode was amended sequentially with Pt (n-Pt), gold (n-Au), and cobalt oxide (n-CoOx) nanostructures. Fascinatingly, the ternary modified n-CoOx/n-Au/n-Pt/GC catalyst (for which n-Pt, n-Au, and n-CoOx were sequentially and respectively assembled onto the GC surface) exhibited a remarkable electrocatalytic enhancement toward FAEO, which surpassed ca. 53 times that of the Pt/GC catalyst. Additionally, it exhibited a much (ca. 18 times) higher stability after 3000 s of continuous electrolysis. The observed enhancement was proven to originate from driving the reaction mechanism principally to the desirable direct dehydrogenation pathway on the expense of the poisoning dehydration path. The impedance and CO stripping measurements confirmed the prevailing of both the electronic and third body effects in the catalytic enhancement. 相似文献
18.
Ying-Xia Wang Chuan-Fei Liu Man-Li Yang Xi-Hui Zhao Zhi-Xin Xue Yan-Zhi Xia 《中国化学快报》2017,28(1):60-64
Concave nanostructures may be developed to improve the specific mass activity of a catalyst for formic acid and methanol electro-oxidation. In this work, we report the elctrocatalytic oxidation of methanol and formic acid in acid medium over concave Pt-Cu-Fe ternary nanocubes (NCs), obtained by the galvanic exchange of Pt and Fe on Cu NCs. The concave Pt-Cu-Fe NCs exhibited improved electrooxidation performance contrasted to Pt-Cu NCs and purchased commercial Pt/C as demonstrated by their improved durability, lower onset potential, and more preferable anti-poisoning properties. These properties are believed to originate from the tailored concave structure of the catalyst and possible synergetic effects among the components of the Pt-Cu-Fe NCs. 相似文献
19.
在丙酮/水混合溶剂中,以氯代十六烷基吡啶为结构导向剂,水合肼还原PdCl42-,制得了直径范围在30~50nm之间的球状多孔Pd纳米粒子超结构.实验表明,氯代十六烷基吡啶对球状多孔Pd纳米粒子超结构的形成起着重要的作用,不加该表面活性剂时,得到的是实心Pd纳米粒子;而丙酮主要影响表面活性剂胶束的尺寸.此外,本文还研究了球状多孔Pd纳米粒子超结构对甲酸氧化的电催化活性,在0.5mol/L H2SO4+0.5mol/L HCOOH溶液中的循环伏安结果表明,球状多孔Pd纳米粒子超结构修饰电极在酸性溶液中电催化氧化甲酸的峰电流约为180mA/mg,明显优于实心Pd纳米粒子修饰电极(峰电流为120mA/mg),且表现出较高的稳定性. 相似文献
20.
采用浸渍法制备了Pt/AC,Pt/ZrO2,Pt/Al2O3催化剂,并研究了其对一甲胺湿式氧化(CWAO)反应的催化性能.结果表明:载体对Pt的催化活性具有十分明显的影响,当Pt负载到活性炭(AC)载体表面时具有最佳的催化活性,其次是氧化锆,而当Pt负载到氧化铝载体表面时,其催化活性最低.一甲胺在Pt/AC,Pt/ZrO2,Pt/Al2O3催化剂表面被矿化所需最低温度分别为200,250和280℃.Pt/AC催化剂优异的催化活性主要归因于Pt与载体间的弱相互作用、活性炭的大比表面积以及载体自身具有一定的催化活性. 相似文献