首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study demonstrates a new kind of single-walled carbon nanotubes (SWNT)-based compartment-less glucose/O2 biofuel cell (BFC) with glucose dehydrogenase (GDH) and bilirubin oxidase (BOD) as the anodic and cathodic biocatalysts, respectively, and with poly(brilliant creysl blue) (BCB) adsorbed onto SWNT nanocomposite as the electrocatalyst for the oxidation of NADH. The prepared GDH-polyBCB-SWNT bioanode exhibits an excellent electrocatalytic activity toward the oxidation of glucose biofuel; in 0.10 M phosphate buffer containing 20 mM NAD+ and 100 mM glucose, the oxidation of glucose commences at −0.25 V and the current reaches its maximum of 310 μA/cm2 at −0.05 V vs. Ag/AgCl. At the BOD-SWNT biocathode, a high potential output is achieved for the reduction of O2 due to the direct electron transfer property of BOD at the SWNTs. In 0.10 M phosphate buffer, the electrocatalytic reduction of O2 is observed at a high potential of 0.53 V vs. Ag/AgCl with an electrocatalytic current plateau of ca. 28 μA/cm2 at 0.45 V under ambient air and ca. 102 μA/cm2 under O2-saturated atmosphere. In 0.10 M phosphate buffer containing 10 mM NAD+ and 40 mM glucose under O2-saturated atmosphere, the power density of the assembled SWNT-based glucose/O2 BFC reaches 53.9 μW/cm2 at 0.50 V. The performance and the stability of the glucose/O2 BFC are also evaluated in serum. This study could offer a new route to the development of new kinds of enzymatic BFCs with a high performance and provide useful information on future studies on the enzymatic BFCs as in vivo power sources.  相似文献   

2.
《Comptes Rendus Chimie》2008,11(9):1004-1009
The paper reports on the electrocatalytic activity of boron-doped diamond (BDD) electrodes electrochemically modified with palladium (Pd) or gold nanoparticles (Au NPs) towards oxygen reduction reaction (ORR) in alkaline medium. The BDD/Pd NP interface shows a well-defined diffusion-controlled voltammetric oxygen reduction peak at −0.25 V vs. Ag/AgCl. This is more positive than the ORR peak at −0.59 V vs. Ag/AgCl observed on BDD/Au-NP composite electrodes. The ORR proceeds via a four-electron process in both cases.  相似文献   

3.
It was found that the copolymer poly(aniline-co-o-aminophenol) (PANOA) can strongly catalyze the reduction of arsenate in a NaCl solution, which was proved by cyclic voltammetry and the determination of activation energy. On the basis of the electrocatalytic reduction of arsenate, the PANOA copolymer was used as a probe to determine directly arsenate. The electrocatalytic activity of the PANOA electrode toward As(V) reduction strongly depended on the pH and the applied potential. Under the optimal conditions, the PANOA electrode can be used to determine directly As(V) concentration in a wide linear range (n = 19) of 0.949 and 495 μM with a correlation coefficient of 0.995 and a limit of detection of 0.495 μM. The sensitivity of the electrode was 0.192 μA μM?1 cm?2. The PANOA electrode had the good storage stability and a less negative operation potential of ?0.15 V (vs. SCE).  相似文献   

4.
The electrochemical reduction of CO2 is strongly influenced by both the applied potential and the surface adsorption status of the catalyst. In this work a gas diffusion electrode (GDE) coated with Pd nanoparticles/carbon black (Pd/XC72) was used to study the electrochemical reduction of CO2. Cyclic voltammetric (CV) analysis of Pd/XC72 between 1.5 V and − 0.6 V (vs. RHE) shows the formation of intermediates and the blocking of hydrogen absorption on the Pd nanoparticles (NPs) under a CO2 atmosphere. The relationships between the Faradaic efficiency/current density and the applied potential reveal that the onset potential of CO formation is around − 0.4 V. Moreover, the presence of adsorbed CO was confirmed through CV analysis of Pd/XC72 under CO2 and CO/He atmospheres. This demonstrates that H atoms and CO intermediates co-adsorb on the surface of the Pd NPs at an applied potential of around − 0.4 V. When the applied potential is more negative than − 0.6 V, adsorption of CO intermediates on the surface of the Pd NPs becomes dominant.  相似文献   

5.
In the present study, the surface poisoning of electrocatalytic monosaccharide oxidation reactions at gold electrodes were investigated. In the cyclic voltammetric studies, the electrocatalytic oxidation of aldohexose and aldopentose type monosaccharides, aminosugars, acetyl-glucosamine and glucronamide were observed at gold plate electrodes in alkaline medium. However, in controlled-potential electrolytic studies ranging −0.3 to −0.2 V in reaction solutions, current flows during electrolyses decreased quickly with time, except when glucosamine was used as a substrate.Results from surface enhanced infrared adsorption (SEIRA) spectroscopic measurements at an evaporated gold electrode for the electrocatalytic oxidation of glucose in 0.1 mol dm−3 NaOH at −0.3 V and Gaussian simulated spectra indicated that the gluconic acid as a 2-electron oxidation product and/or its analogs adsorbed onto the gold surface. Electrochemical quartz crystal microbalance (EQCM) measurement results, along with surface adsorption results from surface poisoning at the gold electrode during electrolytic reactions, suggested that gluconic acid and/or its analogs adsorbed vertically onto electrode surfaces in a full monolayer packing-like conformation. In the case of the electro oxidation of glucosamine in 0.1 mol dm−3 NaOH at −0.2 V, the obtained SEIRA spectra and EQCM results, clearly indicated that the glucosaminic acid as a 2-oxidation glucosamine product did not strongly bind onto the gold electrode surface.  相似文献   

6.
We have investigated the diffusion properties for an ionic porphyrin in water. Specifically, for the {tetrasodium tetraphenylporphyrintetrasulfonate (Na4TPPS) + water} binary system, the self-diffusion coefficients of TPPS4− and Na+, and the mutual diffusion coefficients were experimentally determined as a function of Na4TPPS concentration from (0 to 4) · 10−3 mol · dm−3 at T = 298.15 K. Absorption spectra for this system were obtained over the same concentration range. Molecular mechanics were used to compute size and shape of the TPPS4− porphyrin. We have found that, at low solute concentrations (<0.5 · 10−3 mol · dm−3), the mutual diffusion coefficient sharply decreases as the concentration increases. This can be related to both the ionic nature of the porphyrin and complex associative processes in solution. Our experimental results are discussed on the basis of the Nernst equation, Onsager–Fuoss theory and porphyrin metal ion association. In addition, self-diffusion of TPPS4− was used, together with the Stokes–Einstein equation, to determine the equivalent hydrodynamic radius of TPPS4−. By approximating this porphyrin to a disk, we have estimated structural parameters of TPPS4−. These were found to be in good agreement with those obtained using molecular mechanics. Our work shows how the self-diffusion coefficient of an ionic porphyrin in water is substantially different from the corresponding mutual-diffusion coefficient in both magnitude and concentration dependence. This aspect should be taken into account when diffusion-based transport is modelled for in vitro and in vivo applications of pharmaceutical relevance.  相似文献   

7.
This work reports on a novel chitosan–hematite nanotubes composite film on a gold foil by a simple one-step electrodeposition method. The hybrid chitosan–hematite nanotubes (Chi–HeNTs) film exhibits strong electrocatalytic reduction activity for H2O2. Interestingly, two electrocatalytic reduction peaks are observed at −0.24 and −0.56 V (vs SCE), respectively, one controlled by surface wave and the other controlled by diffusion process. The Chi–HeNTs/Au electrode shows a linear response to H2O2 concentration ranging from 1 × 10−6 to 1.6 × 10−5 mol L−1 with a detection limit of 5 × 10−8 mol L−1 and a sensitivity as high as 1859 μA μM−1 cm−2.  相似文献   

8.
The electrocatalytic oxidation of d-glucosamine (2-amino-2-deoxy-d-glucose) in alkaline and neutral solutions was examined using a carbon felt electrode modified with 2 nm core sized gold nanoparticles (Au2 nm nanoparticles) and a gold plate electrode. The electrocatalytic voltammetric oxidation curves of d-glucosamine were obtained in both solutions. The voltammetric responses for the electrocatalytic oxidation at a Au2 nm nanoparticle-modified electrode in both alkaline and neutral solutions were almost the same to those at a gold plate electrode. The oxidized product was identified to be d-glucosaminic acid (2-amino-2-deoxy- d-gluconic acid) generated by the 2-electron oxidation product of d-glucosamine by electrospray ionization time-of-flight mass spectra (ESI TOF-MS). The HPLC results also indicated that the oxidation product was d-glucosaminic acid.The controlled-potential electrolysis of d-glucosamine was performed at the Au2 nm nanoparticle-modified carbon felt electrodes in both alkaline and neutral solutions. In the alkaline solution, at a potential of −0.2 V, d-glucosaminic acid was formed with a current efficiency of 100%. In the neutral solution, electrolysis at 0.4 V on d-glucosaminic acid was obtained with current efficiencies of 70%.  相似文献   

9.
In situ scanning tunneling microscopy (STM) is used to examine the electrified interface of Au(111) immersed in a pH 3 sulfate medium containing polyethylene glycol (PEG) with an average molecular weight of 6000. The cyclic voltammograms thus obtained show two sharp peaks at − 0.35 and − 0.38 V (vs. reversible hydrogen electrode), which correlates with the STM observation of a highly ordered (2 × 2  3)rect structure and the adsorption of PEGs. X-ray photoelectron spectroscopy is used to examine the film formed at − 0.4 V, revealing prominent C–C and C–O–C structures, thereby supporting the view of adsorption and reduction PEGs on the Au(111) electrode. STM imaging at the initial stage of PEG's adsorption reveals winding linear segments 0.6 nm wide and 20–40 nm long, implying helical conformations of PEGs. The PEG film dissolves and yields a high density of nanoclusters, as the potential is switched stepwise from − 0.4 to 0.9 V.  相似文献   

10.
A comparative study is reported on the electrocatalytic reduction of CO2 to HCOOH in aqueous alkaline solution with differently prepared tin-oxide particles on multi-walled carbon nanotubes from SnCl2 or SnCl4 precursors. The highest faradaic and energy efficiencies of 64% and 27% were obtained at − 1.40 V vs. SCE with particles that were obtained by KBH4 reduction from a SnCl2 precursor. At lower potentials, competitive reduction reactions occur. A SnCl2 versus SnCl4 precursor favors retention of a Sn(II) valence state in a surface tin oxyhydroxide surface layer. Different morphologies of the particle agglomerates made little difference in the electrocatalytic selectivity and activity. The two SnOx/CNT electrodes both showed a current density retention of ~ 70% after a 20-h electrolysis.  相似文献   

11.
A room temperature ionic liquid (RTIL) modified carbon paste electrode was constructed based on the substitute of paraffin with 1-butyl-3-methyl-imidazolium hexafluorophosphate (BMIMPF6) as binder for carbon paste. Direct electrochemistry and electrocatalytic behaviors of hemoglobin (Hb) entrapped in the sodium alginate (SA) hydrogel film on the surface of this carbon ionic liquid electrode (CILE) were investigated. The presence of IL in the CILE increased the electron transfer rate and provided a biocompatible interface. Hb remained its bioactivity on the surface of CILE and the SA/Hb modified electrode showed a pair of well-defined, quasi-reversible cyclic voltammetric peaks with the apparent standard potential (E0′) at about −0.344 V (vs. SCE) in pH 7.0 Britton–Robinson (B–R) buffer solution, which was attributed to the Hb Fe(III)/Fe(II) redox couple. UV–Vis absorption spectra indicated that heme microenvironment of Hb in SA film was similar to its native status. Hb showed a thin-layer electrochemical behavior in the SA film with the direct electron transfer achieved on CILE without the help of electron mediator. Electrochemical investigation indicated that Hb took place one proton with one electron electrode process and the average surface coverage of Hb in the SA film was 3.2 × 10−10 mol/cm2. The immobilized Hb showed excellent electrocatalytic responses to the reduction of H2O2 and nitrite.  相似文献   

12.
We observed the Raman spectra of carriers, positive polarons and bipolarons, generated in a poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT-C14) film by FeCl3 vapor doping. Electrical conductivity and Raman measurements indicate that the dominant carriers in the conducting state were bipolarons. We identified positive polarons and bipolarons generated in an ionic-liquid-gated transistor (ILGT) fabricated with PBTTT-C14 as an active semiconductor and an ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [BMIM][TFSI] as a gate dielectric using Raman spectroscopy. The relationship between the source−drain current (ID) at a constant source−drain voltage (VD) and the gate voltage (VG) was measured. ID increased above −VG = 1.1 V and showed a maximum at −VG = 2.0 V. Positive polarons were formed at the initial stage of electrochemical doping (−VG = 0.8 V). As ID increased, positive bipolarons were formed. Above VG = −2.0 V, bipolarons were dominant. The charge density (n), the doping level (x), and the mobility of the bipolarons were calculated from the electrochemical measurements. The highest mobility (μ) of bipolarons was 0.72 cm2 V−1 s−1 at x = 110 mol%/repeating unit (−VG = 2.0 V), whereas the highest μ of polarons was 4.6 × 10−4 cm2 V−1 s−1 at x = 10 mol%.  相似文献   

13.
Amperometric biosensing of glutamate using nanobiocomposite derived from multiwall carbon nanotube (CNT), biopolymer chitosan (CHIT), redox mediator meldola’s blue (MDB) and glutamate dehydrogenase (GlDH) is described. The CNT composite electrode shows a reversible voltammetric response for the redox reaction of MDB at −0.15 V; the composite electrode efficiently mediates the oxidation of NADH at −0.07 V, which is 630 mV less positive than that on an unmodified glassy carbon (GC) electrode. The CNTs in the composite electrode facilitates the mediated electron transfer for the oxidation of NADH. The CNT composite electrode is highly sensitive (5.9 ± 1.52 nA/μM) towards NADH and it could detect as low as 0.5 μM of NADH in neutral pH. The CNT composite electrode is highly stable and does not undergo deactivation by the oxidation products. The electrode does not suffer from the interference due to other anionic electroactive compounds such as ascorbate (AA) and urate (UA). Separate voltammetric peaks have been observed for NADH, AA and UA, allowing the individual or simultaneous determination of these bioanalytes. The glutamate biosensor was developed by combining the electrocatalytic activity of the composite film and GlDH. The enzymatically generated NADH was electrocatalytically detected using the biocomposite electrode. Glutamate has been successfully detected at −0.1 V without any interference. The biosensor is highly sensitive, stable and shows linear response. The sensitivity and the limit of detection of the biosensor was 0.71 ± 0.08 nA/μM and 2 μM, respectively.  相似文献   

14.
A systematic study on the electrocatalytic properties of Pt nanoparticles supported on nitrobenzene-modified graphene (Pt-NB/G) as catalyst for oxygen reduction reaction (ORR) in alkaline solution was performed. Graphene nanosheets were spontaneously grafted with nitrophenyl groups using 4-nitrobenzenediazonium salt. The electrocatalytic activity towards the ORR and stability of the prepared catalysts in 0.1 M KOH solution have been studied and compared with that of the commercial Pt/C catalyst. The results obtained show that the NB-modified graphene nanosheets can be good Pt catalyst support with high stability and excellent electrocatalytic properties. The specific activity of Pt-NB/G for O2 reduction was 0.184 mA cm−2, which is very close to that obtained for commercial 20 wt% Pt/C catalyst (0.214 mA cm−2) at 0.9 V vs. RHE. The Pt-NB/G hybrid material promotes a four-electron reduction of oxygen and can be used as a promising cathode catalyst in alkaline fuel cells.  相似文献   

15.
This paper describes, for the first time, the development of a simple and highly sensitive chemical sensor based on a new electroactive material, electrogenerated in situ from xanthurenic acid on an electrode modified with MWCNT. The modified electrode shows efficient electrocatalytic oxidation activity towards NADH at an applied potential of 0.1 V vs. Ag/AgCl. The kinetic constant, kkin, for the electrocatalytic oxidation of NADH, evaluated by chronoamperometry and voltammetry using RDE, provided values close to 105 mol?1 L s?1.  相似文献   

16.
Tungsten-containing formate dehydrogenase from Methylobacterium extorquens AM1 (FoDH1) catalyzes formate oxidation with NAD+. FoDH1 shows little direct communication with carbon electrodes, including mesoporous Ketjen Black-modified glassy carbon electrode (KB/GCE); however, it shows well-defined direct electron transfer (DET)-type bioelectrocatalysis of carbon dioxide reduction, formate oxidation, NAD+ reduction, and NADH oxidation on gold nanoparticle (AuNP)-embedded KB/GCE treated with 4-mercaptopyridine. Microscopic measurements reveal that the AuNPs (d = 5 nm) embedded on the KB surface are uniformly dispersed. Electrochemical data indicate that the pyridine moiety on the AuNPs plays important roles in facilitating the interfacial electron transfer kinetics and increasing the probability of productive orientation of FoDH1. The formal potential of the electrochemical communication site, which is most probably an ion‑sulfur cluster, is evaluated as − 0.591 ± 0.005 V vs. Ag | AgCl | sat. KCl from Nernst analysis of the steady-state catalytic waves.  相似文献   

17.
Bidirectional extracellular electron transfer of strain Comamonas testosteroni I2 was for the first time investigated with electrochemical active biofilms developed under different conditions. The electrochemical active biofilm developed under microbial fuel cell conditions was capable of anodic electron transfer via attached redox species with standard potential of 0.04 V (vs. SCE). Meanwhile the above redox species lost its catalytic capability when the biofilm was developed under a constant potential (− 0.4 V vs. SCE). Instead, the microbe adjusted its electron transfer strategy to a soluble shuttle (standard potential − 0.20 V vs. SCE) and enabled a cathodic current. Air exposure experiment verified that the soluble shuttle at negative potential had a positive response to the oxygen; meanwhile the anodic electron transfer via the attached species was rarely influenced.  相似文献   

18.
Electrochemical scanning tunneling microscopy (EC-STM) was applied to observe phospholipid layers over thiol-modified gold substrates as a model biological cell membrane. On a monolayer of 1-octanethiol on Au (1 1 1), a synthetic lipid, 1,2-dihexanoyl-sn-glycero-3-phosphocholine, was introduced in a neutral 0.05 M NH4ClO4 buffer solution. The lipid molecules formed a fluidic layer at 0.0 V vs. RHE of the substrate electrode potential. By cycling the electrode potential between +0.2 V and −0.2 V, the lipid layer reversibly changed over between the fluidic phase and a striped/grainy structure. This structural change might involve partial decomposition and oligomerization of phospholipids. This method will contribute for molecular biology by revealing the nanometer-scale structure of cell membrane.  相似文献   

19.
Electrochemistry/mass spectrometry (EC/MS) using two different types of electrolytic cells was employed for the systematic mechanistic study of colchicine's reduction, both in aqueous and non-aqueous media. In aqueous media, at around − 1 V vs. Ag/AgCl, colchicine suffers a single-electron reduction to a transient anion radical, which after a follow-up protonation leads to a neutral free radical (ErCi mechanism). Depending on the experimental conditions, the latter undergoes some dimerization. At more negative potentials (− 1.4 V vs. Ag/AgCl) and pH < 7, the free radical is undergoing another single-electron reduction and a subsequent protonation. In the absence of protons (aprotic media), the one-electron reduction gives the anion radical. This process becomes fully reversible at high scan rates (≥ 10 V/s).  相似文献   

20.
An electrochemical investigation of arsenic in aqueous solutions was carried out in order to assess the possibility of removing it by reduction from As(III) to its elemental form. Arsine evolution was significant at potentials below −0.650 VSCE on Cu, and below −0.728 VSCE on Pt. As(V) could also be removed on Cu, with a larger evolution of arsine. When a potential equal to −0.560 VSCE was applied to an iron electrode, arsenic deposition took place simultaneously with iron dissolution, and arsine evolution was negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号