首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conducting polymer based electrochromic devices were assembled with various ionic liquid (IL) based electrolytes to probe the role of the ion structure on electrochromic performance. When the IL contained the same anion as the dopant ion used in the conducting polymers an enhanced electrochromic performance was observed providing high photopic contrast at low applied potential.  相似文献   

2.
紫精类电致变色材料的制备和机理   总被引:1,自引:0,他引:1  
曹良成  王跃川 《化学进展》2008,20(9):1353-1360
1,1'-二取代4,4'-联吡啶盐通常称作紫精(viologen),紫精以及接有紫精基团的聚合物(polyviologen)有优异的电致和光致变色性能,在新一代电致变色器件、显示器件和智能窗等方面有很好的应用前景。文章综述了紫精和紫精聚合物的制备、结构与性能、电致变色机理、功能器件设计以及在化学合成、纳米功能符合等方面的研究进展,并提出例如今后的重要研究方向。  相似文献   

3.
A family of soluble narrow band gap donor-acceptor conjugated polymers based on dioxythiophenes and cyanovinylenes is reported. The polymers were synthesized using Knoevenagel polycondensation or Yamamoto coupling polymerizations to yield polymers with molecular weights on the order of 10 000-20 000 g/mol, which possess solubility in common organic solvents. Thin film optical measurements revealed narrow band gaps of 1.5-1.8 eV, which gives the polymers a strong overlap of the solar spectrum. The energetic positions of the band edges were determined by cyclic voltammetry and differential pulse voltammetry and demonstrate that the polymers are both air stable and show a strong propensity for photoinduced charge transfer to fullerene acceptors. Such measurements also suggest that the polymers can be both p- and n-type doped, which is supported by spectroelectrochemical results. These polymers have been investigated as electron donors in photovoltaic devices in combination with PCBM ([6,6]-phenyl C(61)-butyric acid methyl ester) as an electron acceptor based on the near ideal band structures designed into the polymers. Efficiencies as high as 0.2% (AM1.5) with short circuit current densities as high as 1.2-1.3 mA/cm(2) have been observed in polymer/PCBM (1:4 by weight) devices and external quantum efficiencies of more than 10% have been observed at wavelengths longer than 600 nm. The electrochromic properties of the narrow band gap polymers are also of interest as the polymers show three accessible color states changing from an absorptive blue or purple in the neutral state to a transmissive sky-blue or gray in the oxidized and reduced forms. The wide electrochemical range of electrochromic activity coupled with the strong observed changes in transmissivity between oxidation states makes these materials potentially interesting for application to electrochromic displays.  相似文献   

4.
The electrochromic materials have received immense attention for the fabrication of smart optoelectronic devices. The alteration of the redox states of the electroactive functionalities results in the color change in response to electrochemical potential. Even though transition metal oxides, redox-active small organic molecules, conducting polymers, and metallopolymers are known for electrochromism, advanced materials demonstrating multicolor switching with fast response time and high durability are of increasing demand. Recently, two-dimensional covalent organic frameworks (2D COFs) have been demonstrated as electrochromic materials due to their tunable redox functionalities with highly ordered structure and large specific surface area facilitating fast ion transport. Herein, we have discussed the mechanistic insights of electrochromism in 2D COFs and their structure-property relationship in electrochromic performance. Furthermore, the state-of-the-art knowledge for developing the electrochromic 2D COFs and their potential application in next-generation display devices are highlighted.  相似文献   

5.
导电聚合物基电致变色器件的研究进展   总被引:1,自引:0,他引:1  
导电聚合物作为电致变色活性材料是目前最有应用前景的智能材料之一。本文概述了电致变色器件的基本结构和导电聚合物的电致变色机理,着重介绍了多种导电聚合物基电致变色器件的特点、组成及制备,并展望了未来电致变色器件的发展及应用趋势。  相似文献   

6.
Previous work has reported the synthesis of donor–acceptor–donor molecules based on dibenzophenazine acceptor group, presenting thermally activated delayed fluorescent (TADF) properties and their application in the assembly of highly efficient electroluminescent devices. Herein, we focus on the characterisation of charge carrier species through UV-Vis-NIR spectroelectrochemical and potentiostatic EPR techniques, in addition to the investigation of electropolymerisation properties of some compounds depicted in this study. The promising electrochromic features of both small molecules and conjugated polymers led to the assembly and investigation of electrochromic devices, evidencing the materials’ versatility, applied in such different approaches as electrochromic windows and electroluminescent devices. Furthermore, the assembled OLEDs provided high efficiencies, with small roll-off, EQEs up to 20.5 % and luminance values up to 85 000 cd/m2.  相似文献   

7.
Conducting polymers are excellent candidates for applications in displays, mirrors, windows, light-emitting diodes, photovoltaics, near-infrared devices and electrochromic devices. From these potential applications, in this article, we will focus on the electrochromic polymers and devices. Although several objective studies have been conducted in the last decade, bringing to light many advantages over other types of electrochromics, polymeric electrochromics have not yet received the industrial attention that they deserve. One of the most important and dazzling advantages of polymers over the other types of electrochromics is the ease of modification of a polymer's backbone, that changes almost the entire properties of the material and switches many disadvantages into advantages. Our recent completion of the deficient third leg of additive primary colour space was a very good example of tailoring the polymer backbone. This discovery could be considered as one of the milestones of commercialization of polymeric electrochromics. In this article, we will also discuss the completion of the additive primary colours, red, green and blue (RGB), in polymeric electrochromics and their ways of commercialization.  相似文献   

8.
Azulene‐containing conjugated polymers with near‐infrared absorption up to 1.5 μm and beyond are achieved by treating with trifluoroacetic acid (TFA). Density functional theory calculations reveal that the near‐infrared absorption arises from a strong intramolecular charge transfer transition on the polymer backbone, and the near‐infrared absorption can be tuned by the degree of protonation. Furthermore, TFA treated polymers show a ten‐fold enhancement in electrochromic contrast and significantly improved switching stability, suggesting that these polymers are promising candidates for fabrication of the first generation organic near‐infrared devices.  相似文献   

9.
Bipolar electrode-based (BPE-based) electrochromic devices have garnered increasing attention in the past decade. These BPE-based electrochromic devices have been used for analytical health monitoring, point-of-care (POC) diagnostics, and chemical sensing. In this review, we highlight recent progress made regarding BPE-based electrochromic devices constructed for these analytical applications. Various, available electrochromic materials are summarized in the first section, after which the different device types (e. g., paper-based and self-powered) are discussed. Biological- and chemical-based analytical demonstrations of these devices are then reviewed. Finally, we conclude this review with a perspective on the future developments of BPE-based electrochromic devices in analytical applications.  相似文献   

10.
Applications opportunities are described for conducting polymer devices, including (1) batteries and redox capacitors, (2) electromechanical actuators, (3) electrochromic windows and displays, (4) chemical separation and chemical delivery systems, and (5) indicators and sensors. Each of these potential application areas depends upon the dramatic property changes which occur during chemical or electrochemical doping. Since the properties profiles of conducting polymers can be reversibly changed either chemically or electrochemically, these polymers also provide exciting candidates for intelligent materials systems - where sensor, logic element, and actuator functions can be either partially or fully integrated. Results of device and properties investigations are used to evaluate future possibilities for conducting polymers in intelligent material systems.  相似文献   

11.
Poly(2‐arylazulene‐alt‐fluorene) and poly(2‐arylazulene‐alt‐thiophene) are synthesized via Suzuki and Stille cross‐coupling polymerization, respectively, using 1,3‐dibromo‐2‐arylazulenes as monomers, which are prepared by a novel directed C?H activation method of 2‐carboxylic azulene and subsequent bromination reaction. Our study shows that functionalization at the 2‐position of azulene monomers influences polymer properties. For instance, different from electron‐withdrawing groups that discourage the protonation of azulene, electron‐donating aryl groups, however, enhances the sensitivity of response to acid. Protonation of the polymers leads to significant shifts in absorption spectra accompanying with obvious color changes from green to brown in majority cases because of the formation of poly(azulenium cation). The electrochromic properties of polymers are examined, exhibiting that nature of aryl group at the 2‐position of azulene influences the stability of their electrochromic devices.  相似文献   

12.
π-Conjugated polymers(CPs)represent one of the quite important and rapidly growing branches of flexible electrochromic materials.Electrosynthesized hybrid CPs employing dibenzo pentacycles(fluorenes,carbazoles,dibenzothiophenes,and dibenzofuran)as the backbones have received considerable attention owing to their special structures and interesting electrochromic performances.Recent studies show that polymers from these structures exhibit decent contrast ratios,favorable coloration efficiencies,low switching voltages,fast response time,excellent stability,and color persistence.Intrinsically,their electrochromic properties significantly depend on fine-tailoring of precursor monomer structures,and polymerization techniques and conditions.This review devotes to showing a clear picture of the research progress of dibenzo pentacycle-centered CPs via electrochemical polymerization,including fluorenes,carbazoles,dibenzothiophenes,and dibenzofuran-based hybrid electrochromic polymers.Critical influences of the tailored precursor structures on their electropolymerization and resultant polymer performances are highlighted,aiming at providing an insight for the development of novel fused ring-based polymer electrochromic materials.  相似文献   

13.
Progresses in the design and application of conjugated small molecules, oligomers and polymers have empowered rapid development of organic electronic technology as an alternative to conventional devices. Among the numerous organic electronic materials, benzotrithiophene (BTT)-based oligomers and polymers have recently come in the limelight demonstrating great potential in organic electronics as high performance photovoltaic devices, field-effect transistors, electrochromic materials, high-area capacitors and charge carrier discotic liquid crystals. In this digest, we propose an overview of the organic electronic materials based on BTT isomers, highlighting the structure-performance relationship. The results obtained so far clearly indicate that the BTT isomers are among the most promising building blocks for the development π-extended materials for optoelectronic applications in the near future.  相似文献   

14.
Summary: Polymers that have one of the three complementary colors (red, green, and blue, RGB) in the neutral state and high transmissivity in the oxidized state are the key materials towards use in electrochromic devices and displays. Although many neutral state red and blue polymers have been reported up to date, green polymers with highly transmissive oxidized states, high optical contrasts, fast switching times, and advanced long-term switching stabilities were essentially missing in the literature. This paper reviews our previous efforts towards realization of neutral state green polymers with highly transmissive oxidized state. The key to this problem was found to be the synthesis of donor-acceptor polymers bearing benzothiadiazole or quinoxaline derivatives as the acceptor and electron rich 3,4-ethylenedioxythiophene unit as the donor component. Green neutral state polymeric materials with highly transmissive oxidized state with excellent electrochromic properties have been realized with the design and synthesis of these types of materials. A solution processable green polymeric material has also been realized via chemical polymerization that has shown all superior properties of the electrochemically synthesized counterparts.  相似文献   

15.
给-受体型窄带隙聚合物是一类新型可见-近红外电致变色材料,虽然可调性强、颜色丰富,但是其电致变色性能如对比度、稳定性等需要进一步提高。 通过调节聚合物中构筑单元吡咯并吡咯二酮(DPP)、苯并噻二唑(BTZ)和噻吩(T)的比例(n(DPP):n(BTZ):n(T)分别为1:0:1、1.5:0.5:1、2:1:1和3:2:1),合成了4种新型窄带隙电致变色聚合物,研究聚合物结构和电致变色性能的关系。 研究发现,这类聚合物在近红外光谱区具有较高的对比度(ΔT:50%60%)和变色效率(CE:300600 cm2/C),尤其是在1550 nm处,聚合物P3的ΔT高达63%、P4的CE高达471 cm2/C。 相比之下,含有BTZ基团的聚合物的吸收更长、对比度更高且更稳定。 这为设计给-受体型高性能电致变色聚合物提供了新的思路。  相似文献   

16.
Electrochromic devices, which dynamically change color under applied potentials, are widely studied for use in energy-efficient smart windows. The operation of electrochromic materials and devices involves the gain or loss of electrons and simultaneous insertion/extraction of ions with opposite charges to balance the internal electric fields. The performance is therefore limited by kinetics of charge transport in the electrochromic materials as well as ion migration in the electrolyte, materials and at their interfaces. Nanostructured electrochromic materials have an extremely short charge transport distance facilitating charge transport in electrochromic devices and large specific surface area for interaction with electrolytes, and thus may provide fast charge and ions transport, high electrochemical activities and remarkable enhancement of electrochromic properties. The recent progress in application of nanostructures, including nanoparticles, 1D and 2D nanostructures, in metal oxide electrochromic materials and devices is reviewed. A perspective on the development trends in electrochromic materials and devices is also proposed.  相似文献   

17.
电致变色是一种响应外部电刺激而发生颜色变化的现象,材料可以在不同的氧化还原状态之间进行可逆切换,从而在可见光或近红外区域产生新的吸收带。迄今为止,电致变色材料主要包括过渡金属氧化物、过渡金属配位聚合物、紫罗精、有机共轭聚合物等。过渡金属配位聚合物类电致变色材料兼具无机材料和有机材料的优点,具有广泛的应用前景。铁配位聚合物具有良好的氧化还原性质和丰富的电子跃迁,是一类性能优异的电致变色材料。本文综述了铁金属配位聚合物类电致变色材料的研究进展,主要从有机配体的臂形、种类和间隔基团等方面进行分类阐述。  相似文献   

18.
Phosphazenes, one of the most important classes of organophosphorus compounds containing phosphorus (V) with double bonds between P and N, can be cyclic molecules or high molecular weight polymers that play an important and dominant role in advanced inorganic materials. Phosphazenes have been the subject of many studies over the past two decades as an excellent synthetic platform for the development of fluorescent materials. This study is conducted to evaluate the contribution of phosphazene chemistry to the preparation of fluorescent materials and to emphasize its importance in development of sophisticated materials. This review provides detailed information about the latest developments in the field of cyclic-, dendrimeric- and polymeric phosphazenes based fluorescent materials and their application examples of sensors (fluorescent and electrochemical) and optoelectronic devices (OLED, OFET and electrochromic devices). The future perspective of fluorescence materials based on phosphazenes is also discussed.  相似文献   

19.
Yu  Danrui  Wei  Wei  Wei  Min  Wang  Fei  Liang  Xiao  Sun  Shuokun  Gao  Mingrui  Zhu  Quanyao 《Journal of Solid State Electrochemistry》2022,26(6-7):1399-1407
Journal of Solid State Electrochemistry - Vanadium pentoxide (V2O5) is one of the most popular electrochromic material for electrochromic devices due to its excellent storage capacity of lithium...  相似文献   

20.
Dithienothiophene (DTT) based conjugated microporous polymers (CMPs) were synthesized by bulk and electrochemical oxidative polymerizations. Spectroelectrochemical measurements showed that DTT‐CMP can be reversibly oxidized and reduced, accompanied by a significant change of the absorption properties making the material interesting for electrochromic devices. Reversible doping and dedoping of the bulk polymer network was also observed using iodine and ammonia, respectively. Nitrogen gas sorption measurements of the neutral, doped, and dedoped polymer networks indicated the presence of iodide species within the pores, and the conductivity of the networks is highly increased upon doping with iodine. The introduction of the strong electron donor DTT into a conjugated porous network, and the ability for redox switching, make DTT‐CMPs interesting materials for organo(opto)electronic devices and sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号