共查询到20条相似文献,搜索用时 15 毫秒
1.
W. Zheng H.Y. Zhao J.X. Zhang H.M. Zhou X.X. Xu Y.F. Zheng Y.B. Wang Y. Cheng B.Z. Jang 《Electrochemistry communications》2010,12(7):869-871
This study demonstrated a novel nanographene platelets (NGPs)-based glucose/O2 biofuel cell (BFC) with the glucose oxidase (GOD) as the anodic biocatalysts and the laccase as the cathodic biocatalysts. The GOD/NGPs-modified electrode exhibited good catalytic activity towards glucose oxidation and the laccase/NGPs-modified electrode exhibited good catalytic activity towards O2 electroreduction. The maximum power density was ca. 57.8 μW cm? 2 for the assembled glucose/O2 NGPs-based BFC. These results indicated that the NGPs were very useful for the future development of novel carbon-based nanomaterials BFC device. 相似文献
2.
《Electrochemistry communications》2008,10(7):1012-1015
Multilayer film of laccase, poly-l-lysine (PLL) and multi-walled carbon nanotubes (MWNTs) were prepared by a layer-by-layer self-assembly technique. The results of the UV–vis spectroscopy and scanning electron microscopy studies demonstrated a uniform growth of the multilayer. The catalytic behavior of the modified electrode was investigated. The (MWNTs/PLL/laccase)n multilayer modified electrode catalyzed four-electron reduction of O2 to water, without any mediator. The possible application of the laccase-catalyzed O2 reduction at the (MWNTs/PLL/laccase)n multilayer modified ITO electrode was illustrated by constructing a glucose/O2 biofuel cell with the (MWNTs/thionine/AuNPs)8 GDH film modified ITO electrode as a bioanode and the (MWNTs/PLL/laccase)15 film modified ITO electrode as a biocathode. The open-circuit voltage reached to 700 mV, and the maximum power density achieved 329 μW cm−2 at 470 mV of the cell voltage. 相似文献
3.
A new type of dehydrogenase-based amperometric glucose biosensor was constructed using glucose dehydrogenase (GDH) which was immobilized on the edge-plane pyrolytic graphite (EPPG) electrode modified with poly(phenosafranin)-functionalized single-walled carbon nanotubes (PPS-SWCNTs). The PPS-SWCNT-modified EPPG electrode was prepared by electropolymerization of phenosafranin on the EPPG electrode which had been previously coated with SWCNTs. The performance of the GDH/PPS-SWCNT/EPPG bioanode was evaluated using cyclic voltammetry and amperometry in the presence of glucose. The GDH/PPS-SWCNT/EPPG electrode possesses promising characteristics as a glucose sensor: a wide linear dynamic range of 50 to 700 μM, low detection limit of 0.3 μM, fast response time (1-2 s), high sensitivity (96.5 μA cm(-2) mM(-1)), and anti-interference and anti-fouling abilities. Moreover, the performance of the GDH/PPS-SWCNT/EPPG bioanode was tested in a glucose/O(2) biofuel cell. The maximum power density delivered by the assembled glucose/O(2) biofuel cell could reach 64.0 μW cm(-2) at a cell voltage of 0.3 V with 40 mM glucose. 相似文献
4.
Carbon fiber microelectrodes modified with carbon nanotubes as a new support for immobilization of glucose oxidase 总被引:1,自引:0,他引:1
Hao Wen Vijayadurga Nallathambi Deboleena Chakraborty Scott Calabrese Barton 《Mikrochimica acta》2011,175(3-4):283-289
Carboxylated carbon nanotubes were coated onto carbon microfiber electrodes to create a micron-scale bioelectrode. This material has a high surface area and can serve as a support for immobilization of enzymes such as glucose oxidase. A typical carbon nanotube loading of 13???g?cm?1 yields a coating thickness of 17???m and a 2000-fold increase in surface capacitance. The modified electrode was further coated with a biocatalytic hydrogel composed of a conductive redox polymer, glucose oxidase, and a crosslinker to create a glucose bioelectrode. The current density on oxidation of glucose is 16.6?mA?cm?2 at 0.5?V (vs. Ag/AgCl) in oxygen-free glucose solution. We consider this approach to be useful for designing and characterizing surface treatments for carbon mats and papers by mimicking their local microenvironment. Figure
Carboxylated carbon nanotubes were coated on a carbon fiber microelectrode as a support for a glucose-oxidizing bioelectrode. Glucose oxidation current density increased linearly with nanotube surface area up to 16.6?mA?cm?2 at 0.5?V (vs. Ag/AgCl) in oxygen-free glucose solution. 相似文献
5.
《Electrochemistry communications》2007,9(2):331-336
The present study reports the development of operational membrane-less glucose/O2 biofuel cell based on oxygen contactor. Glucose oxidation was performed by glucose oxidase (GOx) co-immobilized with the mediator 8-hydroxyquinoline-5-sulfonic acid hydrate (HQS) at the anode, whereas oxygen was reduced by laccase co-immobilized with 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS2−) at the cathode. Both enzymes and mediators were immobilized within electropolymerized polypyrrole polymers.Nevertheless, this system is limited by the secondary reaction of O2 electro-reduction at the anode that reduces the electron flow through the anode and thus the output voltage. In order to avoid the loss of current at the anode in glucose/O2 biofuel cell, we developed a strategy to supply dissolved oxygen separate from the electrolyte. Porous carbon tubes were used as electrodes and modified on the external surface by the couple enzyme/mediator. The inside of the cathode tube was continuously supplied with saturated dioxygen solution diffusing from the inner to the external surface of the porous tube. The assembled biofuel cell was studied under nitrogen at 37 °C in phosphate buffer at pH 5.0 and 7.0. The maximum power density reached 27 μW cm−2 at a cell voltage of 0.25 V at pH 5.0 with 10 mM glucose. The power density was twice as high as compared to the same system with oxygen bubbling directly in the cell. 相似文献
6.
A. Habrioux G. Merle K. Servat K.B. Kokoh C. Innocent M. Cretin S. Tingry 《Journal of Electroanalytical Chemistry》2008,622(1):97-102
A concentric glucose/O2 biofuel cell has been developed. The device is constituted of two carbon tubular electrodes, one in the other, and combines glucose electrooxidation at the anode and oxygen electroreduction at the cathode. The anodic catalyst is glucose oxidase co-immobilized with the mediator 8-hydroxyquinoline-5-sulfonic acid hydrate, and the cathodic catalyst is bilirubin oxidase co-immobilized with the mediator 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt. Both enzymes and mediators are entrapped at the surface of the tubular electrodes by an electrogenerated polypyrrole polymer. The originality of the concentric configuration is to compartmentalize the anode and cathode electrodes and to supply dissolved oxygen separate from the electrolyte in order to avoid secondary reactions. The dissolved oxygen circulates through the inside of the cathode tube and diffuses from the inner to the external surface of the tube to react directly with the immobilized bilirubin oxidase. The assembled biofuel cell is studied at 37 °C in phosphate buffer pH 7.4. We show the influence of the thickness of the polypyrrole polymer on the electrochemical activity of the biocathodes. We also demonstrate the effect of the chemical reticulation of the enzymes by glutaraldehyde within the polymer on the performances of the bioelectrodes. The maximum power density delivered by the assembled glucose/O2 biofuel cell reaches 42 μW cm−2, evaluated from the geometric area of the electrodes, at a cell voltage of 0.30 V with 10 mM glucose. The results demonstrate that the concentric design of the BFC based on compartmented electrodes is a promising architecture for further development of micro electronic devices. 相似文献
7.
《Electrochemistry communications》2007,9(5):989-996
This study demonstrates a new kind of single-walled carbon nanotubes (SWNT)-based compartment-less glucose/O2 biofuel cell (BFC) with glucose dehydrogenase (GDH) and bilirubin oxidase (BOD) as the anodic and cathodic biocatalysts, respectively, and with poly(brilliant creysl blue) (BCB) adsorbed onto SWNT nanocomposite as the electrocatalyst for the oxidation of NADH. The prepared GDH-polyBCB-SWNT bioanode exhibits an excellent electrocatalytic activity toward the oxidation of glucose biofuel; in 0.10 M phosphate buffer containing 20 mM NAD+ and 100 mM glucose, the oxidation of glucose commences at −0.25 V and the current reaches its maximum of 310 μA/cm2 at −0.05 V vs. Ag/AgCl. At the BOD-SWNT biocathode, a high potential output is achieved for the reduction of O2 due to the direct electron transfer property of BOD at the SWNTs. In 0.10 M phosphate buffer, the electrocatalytic reduction of O2 is observed at a high potential of 0.53 V vs. Ag/AgCl with an electrocatalytic current plateau of ca. 28 μA/cm2 at 0.45 V under ambient air and ca. 102 μA/cm2 under O2-saturated atmosphere. In 0.10 M phosphate buffer containing 10 mM NAD+ and 40 mM glucose under O2-saturated atmosphere, the power density of the assembled SWNT-based glucose/O2 BFC reaches 53.9 μW/cm2 at 0.50 V. The performance and the stability of the glucose/O2 BFC are also evaluated in serum. This study could offer a new route to the development of new kinds of enzymatic BFCs with a high performance and provide useful information on future studies on the enzymatic BFCs as in vivo power sources. 相似文献
8.
Coman V Vaz-Domínguez C Ludwig R Harreither W Haltrich D De Lacey AL Ruzgas T Gorton L Shleev S 《Physical chemistry chemical physics : PCCP》2008,10(40):6093-6096
We report the fabrication and characterisation of a non-compartmentalised, mediator and cofactor free glucose-oxygen biofuel cell based on adsorbed enzymes exhibiting direct bioelectrocatalysis, viz. cellobiose dehydrogenase from Dichomera saubinetii and laccase from Trametes hirsuta as the anodic and cathodic bioelements, respectively, with the following characteristics: an open-circuit voltage of 0.73 V; a maximum power density of 5 microW cm(-2) at 0.5 V of the cell voltage and an estimated half-life of > 38 h in air-saturated 0.1 M citrate-phosphate buffer, pH 4.5 containing 5 mM glucose. 相似文献
9.
Liu Y Wang M Zhao F Liu B Dong S 《Chemistry (Weinheim an der Bergstrasse, Germany)》2005,11(17):4970-4974
A glucose/O2 biofuel cell (BFC) possessing a pH-dependent power output was fabricated by taking porous carbon (PC) as the matrix to load glucose oxidase or fungi laccase as the catalysts. The electrolytes in the anode and cathode compartments contain ferrocene monocarboxylic acid and 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt as the mediators, respectively. The power of the BFC was enhanced significantly by using PC as the matrix, rather than glassy carbon electrode. Additionally, the power output of the BFC decreases as the pH of the solution increases from 4.0 to 7.0, which provides a simple and efficient method to achieve the required power output. More importantly, the BFC can operate at pH 6.0, and even at pH 7.0, which overcomes the requirement for cathode solutions of pH<5.0 when using fungi laccase as a catalyst. Operation of the BFC at neutral pH may provide a means to power medical devices implanted in physiological systems. The facile and low-cost fabrication of this BFC may enable its development for other applications. 相似文献
10.
Mano N 《Chemical communications (Cambridge, England)》2008,(19):2221-2223
We report the highest power biofuel cell operating at the lowest concentration to date: 5 mM glucose concentration. 相似文献
11.
Selloum Djamel Techer Vincent Henni Abdellah Tingry Sophie Cretin Marc Innocent Christophe 《Journal of Solid State Electrochemistry》2020,24(3):623-631
Journal of Solid State Electrochemistry - Biofuel cells are an attractive alternative to conventional fuel cells, because they use biological catalysts. We report in this article the construction... 相似文献
12.
In this work, large area MOF-derived ZnCo2O4/C anchored on carbon fiber as high-performance anode materials was fabricated via a facile method and subsequent annealing treatment. 相似文献
13.
Renata Mamińska Marta Kucharek Pawel Jozwiak Jerzy Garbarczyk Artur Dybko Wojciech Wróblewski 《Mikrochimica acta》2007,159(3-4):311-318
A method for the fabrication of ion-selective all-solid-state microelectrodes is presented. The ion-to-electron transduction
process takes place into the transducer material. In this approach, AgI-Ag2O-V2O5 glasses, which exhibit ionic and electrical conductivity are applied as ion-to-electron transducers of polymeric membrane
microelectrodes. All-solid-state electrodes based on potassium-sensitive poly(vinyl chloride) membranes, deposited directly
on the surface of glass composites, exhibited theoretical responses. Their selectivity and durability were comparable to planar
microelectrodes containing an internal electrolyte immobilized in the intermediate hydrogel layer. The only disadvantage of
the proposed structures was their limited reproducibility. Moreover, it was found that the unmodified AgI-Ag2O-V2O5 glasses can be applied as ion-sensitive membrane of solid-state microelectrodes for the determination of Ag+ and I− ions. 相似文献
14.
Brune A Jeong G Liddell PA Sotomura T Moore TA Moore AL Gust D 《Langmuir : the ACS journal of surfaces and colloids》2004,20(19):8366-8371
Porphyrin-sensitized nanoparticulate TiO(2) on conducting glass has been investigated as a photoanode material for a new cell that converts light energy into electricity. The cell is a hybrid of a dye-sensitized nanoparticulate semiconductor photoelectrochemical solar cell, and a biofuel cell that oxidizes glucose. Porphyrin molecules excited by light inject electrons into the photoanode, from where they enter the external circuit. The resulting porphyrin radical cations are reduced by NADH in aqueous buffer, ultimately regenerating the photoanode and producing NAD(+). Glucose dehydrogenase oxidizes glucose, and in the process recycles NAD(+) back to NADH. The photoanode is coupled with a suitable cathode to make a functioning cell (Hg/Hg(2)SO(4) was employed for evaluation purposes). The cell produces 1.1 V at open circuit and has a fill factor of 0.61. These values are both significantly higher than those for a previously reported cell of a similar type based on an SnO(2) electrode. 相似文献
15.
PbO2/activated carbon(AC) hybrid supercapacitor in H2SO4 with a carbon foam current collector is studied.The PbO2/AC hybrid is designed with electrodeposited PbO2 thin film as positive electrode to match with AC negative electrode.The discharge curve shows capacitive characteristics between 1.88 V and 0.65 V.The hybrid system exhibits excellent energy and power performance,with specific energy of 43.6 Wh/kg at a power density of 654.2 W/kg.The use of carbon foam current collector ensures stability of the PbO2 electrode in H2SO4 environment.After 2600 deep cycles at 15 C high rate of charge/discharge,the capacity remains nearly unchanged from its initial value. 相似文献
16.
Pizzariello A Stred'ansky M Miertus S 《Bioelectrochemistry (Amsterdam, Netherlands)》2002,56(1-2):99-105
An improved composite bulk-modified bioelectrode setup based on a solid binding matrix (SBM) has been used to develop a glucose/hydrogen peroxide biofuel cell. Fuel is combined through a catalytically promoted reaction with oxygen into and oxidized species and electricity. The present work explores the feasibility of a sugar-feed biofuel cell based on SBM technology. The biofuel cell that utilizes mediators as electron transporters from the glucose oxidation pathway of the enzyme directly to electrodes is considered in this work. The anode was a glucose oxidase (GOx, EC 1.1.3.4)/ferrocene-modified SBM/graphite composite electrode. The cathode was a horseradish peroxidase (HRP, EC 1.11.1.7)/ferrocene-modified SBM/graphite composite electrode. The composite transducer material was layered on a wide polymeric surface to obtain the biomodified electrodic elements, anodes and cathodes and were assembled into a biofuel cell using glucose and H(2)O(2) as the fuel substrate and the oxidizer. The electrochemical properties and the characteristics of single composite bioelectrodes are described. The open-circuit voltage of the cell was 0.22 V, and the power output of the cell was 0.15 microW/cm(2) at 0.021 V. The biofuel cell proved to be stable for an extended period of continuous work (30 days). The reproducibility of the biotransducers fabrication was also investigated. In addition, an application of presented biofuel cell, e.g. the use of hydrolyzed corn syrup as renewable biofuels, was discussed. 相似文献
17.
研究了不同浓度的Hg^2^+在碳纤维微电极电沉积Hg的形态, 沉积机制和实验参数对汞膜性质及溶出电流的影响; 剖析了Hg的成核过程, 验证了成核理论; 借扫描电镜观察了汞晶体图象。约在6×10^-^5mol·L^-^1Hg^2^+时镀汞, 可形成密布型微汞滴构成的类汞膜, 微滴直径在0.03-0.2μm, 汞微滴密度约为5.7×10^6个/cm^2, 提出了优化汞膜的实验条件和依据。 相似文献
18.
O2 was electroreduced to water, at a true-surface-area-based current density of 0.5 mA cm-2, at 37 degrees C and at pH 5 on a "wired" laccase bioelectrocatalyst-coated carbon fiber cathode. The polarization (potential vs the reversible potential of the O2 /H2O half-cell in the same electrolyte) of the cathode was only -0.07 V, approximately one-fifth of the -0.37 V polarization of a smooth platinum fiber cathode, operating in its optimal electrolyte, 0.5 M H2SO4. The bioelectrocatalyst was formed by "wiring" laccase to carbon through an electron conducting redox hydrogel, its redox functions tethered through long and flexible spacers to its cross-linked and hydrated polymer. Incorporation of the tethers increased the apparent electron diffusion coefficient 100-fold to (7.6 +/- 0.3) x 10-7 cm 2 s-1. A miniature single-compartment glucose-O2 biofuel cell made with the novel cathode operated optimally at 0.88 V, the highest operating voltage for a compartmentless miniature fuel cell. 相似文献
19.
We report the first example of an H2/O2 enzymatic fuel cell able to power a wireless transmission system. Oxygen-tolerant hydrogenase from Aquifex aeolicus and bilirubin oxidase from Myrothecium verrucaria were incorporated from diluted solutions in carbon felt-based material, allowing mediatorless catalytic currents more than 1 mA to be reached. The enzymatic fuel cell open circuit voltage was 1.12 V, and short circuit current was 767 μA. It delivered a maximum power of 410 μW, sufficient to power the electronic device that measured in real time the anodic/cathodic compartments and room temperatures, the voltage of the capacitor and voltage output of the enzymatic fuel cell itself. Notably, data were sent every 25 s during 7 hours of continuous operation which constitute the highest performances ever reported for a realistic environmental application fully powered with an enzymatic fuel cell. 相似文献
20.
Juan Manuel Jiménez-Soto Soledad Cárdenas Miguel Valcárcel 《Analytical and bioanalytical chemistry》2013,405(8):2661-2669
This paper evaluates the potential of oxidized single-walled carbon nanohorns (o-SWNHs) immobilized on the pores of a hollow fiber (HF) for the direct immersion solid-phase microextraction of triazines from waters. The fabrication of the device requires the oxidation of the nanoparticles by means of microwave irradiation in order to obtain a homogeneous dispersion in methanol. Then, a porous hollow fiber is immersed in the methanolic dispersion of the o-SWNHs under ultrasound stirring. This procedure permits the immobilization of the o-SWNHs in the pores of the hollow fiber. For the extraction, a stainless steel wire was introduced inside the fiber to allow the vertical immersion of the o-SWNHs-HF in the aqueous standard/water sample. The triazines were preconcentrated on the immobilized o-SWNHs and further eluted using 150 μL of methanol. The solvent was evaporated and the residue reconstituted in 10 μL of methanol for sensitivity enhancement. Gas chromatography–mass spectrometry was selected as instrumental technique. The limits of detection were between 0.05 and 0.1 μg?L?1 with an excellent precision (expressed as relative standard deviation) between runs (below 10.2 %) and between fibers (below 12.8 %). Finally, the method was applied to the determination of the triazines in fortified waters, an average recovery value of 90 % being obtained. 相似文献