首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aerosol flame pyrolysis deposition method was applied to deposit the oxide glass electrolyte film and LiCoO2 cathode for thin film type Li-ion secondary battery. The thicknesses of as-deposited porous LiCoO2 and Li2O–B2O3–P2O5 electrolyte film were about 6 μm and 15 μm, respectively. The deposited LiCoO2 was sintered for 2 min at 700 °C to make partially densified cathode layer, and the deposited Li2O–P2O5–B2O3 glass film completely densified by the sintering at 700 °C for 1 h. After solid state sintering process the thicknesses were reduced to approximately 4 μm and 6 μm, respectively. The cathode and electrolyte layers were deposited by continuous deposition process and integrated into a layer by co-sintering. It was demonstrated that Aerosol flame deposition is one of the good candidates for the fabrication of thin film battery.  相似文献   

2.
《Solid State Sciences》2007,9(9):777-784
Petroleum coke and those heat-treated at 1860 °C, 2100 °C, 2300 °C 2600 °C and 2800 °C (abbreviated as PC, PC1860, PC2100, PC2300, PC2600 and PC2800) were fluorinated by elemental fluorine of 3 × 104 Pa at 200 °C and 300 °C for 2 min. Natural graphite powder samples with average particle sizes of 5 μm, 10 μm and 15 μm (abbreviated as NG5μm, NG10μm and NG15μm) were also fluorinated by ClF3 of 3 × 104 Pa at 200 °C and 300 °C for 2 min. Transmission electron microscopic (TEM) observation revealed that closed edge of PC2800 was destroyed and opened by surface fluorination, which increased the first coulombic efficiencies of PC2300, PC2600 and PC2800 by 12.1–18.2% at 60 mA/g and by 13.3–25.8% at 150 mA/g in 1 mol/dm3 LiClO4–ethylene carbonate (EC)/diethyl carbonate (DEC) (1:1 in volume). Light fluorination of NG10μm and NG15μm increased the first coulombic efficiencies by 22.1–28.4% at 150 mA/g in 1 mol/dm3 LiClO4–EC/DEC/PC (PC: propylene carbonate, 1:1:1 in volume).  相似文献   

3.
0.3 wt % ammonium fluoride (NH4F) or ammonium chloride (NH4Cl) was added to ethylene glycol (EG) as an active ingredient for the formation of anodic oxide comprising of ZrO2 nanotubes (ZNTs) by anodic oxidation of zirconium (Zr) at 20 V for 10 min. It was observed that nanotubes were successfully grown in EG/NH4F/H2O with aspect ratio of 144.3. Shorter tubes were formed in EG/NH4F/H2O2. This could be due to higher excessive chemical etching at the tip of the tubes. When fluoride was replaced by chloride in both electrolytes, multilayered oxide resembling pyramids was observed. The pyramids have width at the bottom of 3-4 μm and the top is 1-2 μm with 10.7 μm height. Oxidation of Zr in EG/NH4Cl/H2O2 was rater rapid. The multilayered structure is thought to have formed due to the re-deposition of ZrO2 or hydrated ZrO2 on the foil inside pores formed within the oxide layer. XRD result revealed an amorphous structure for as-anodized samples regardless of the electrolytes used for this work.  相似文献   

4.
《Solid State Sciences》2007,9(5):404-409
Laser zone melting was employed in this work to prepare MTiO3 based coatings over commercial, polycrystalline Al2O3 substrates, using the corresponding mixtures of powdered alkaline earth carbonates and TiO2 as starting materials. In situ synthesis of the series M = Ca, Sr, Ba was studied using a CO2 laser as the heating source, emitting at 10.6 μm, following substrate preheating to a temperature of 750 °C and sample displacement speed of 500 mm h−1. Microstructure (SEM) and phase composition (XRD) demonstrated in situ formation of crystalline MTiO3 perovskite (M = Ca, Sr), MAl2O4 (M = Ca), MAl12O19 magnetoplumbite type (M = Sr) and MAl14O22 β-alumina type (M = Ba) phases. Substantial interaction with the substrate resulted in stable, 50–150 μm thick, composite coatings.  相似文献   

5.
Cu-deposited TiO2 films were prepared by photoreduction of Cu(II) in the presence of sodium formate. With the initial Cu(II) concentrations more than 100 mg L?1, induction periods were observed before the transmittance decreased. Scanning electron microscopy indicated that Cu particles of 2.6 ± 0.5 μm were deposited isolatedly with much open space in the induction periods. The films prepared by changing the irradiation time within the induction periods showed a higher photocatalytic activity than a pure TiO2 for the degradation of methylene blue under the reaction condition without purging air.  相似文献   

6.
Bioactive zirconium oxide nanotubular arrays on zirconium alloys are prepared electrochemically in fluoride and phosphate containing electrolyte. Geometric factors of the ZrO2 nanotubular layers, particularly the pore diameter and thickness, are affected by the electrochemical conditions, including applied potential and anodization time. Under specific sets of conditions, highly ordered ZrO2 nanotubular arrays are formed with diameters varying from 30 nm to 75 nm and lengths varying from 2 μm to 12 μm. XPS shows that the nanotubular layer contains a significant amount of phosphate species distributed almost homogeneously over the entire tubular length. The ZrO2 nanotubular layer formed in fluoride and phosphate containing electrolyte highly enhances the formation of bioactive hydroxyapatite coating in simulated biological fluid (SBF).  相似文献   

7.
Ag and Au nanoparticles were found to significantly enhance the photocatalytic activity of self-organized TiO2 nanotubular structures. The catalyst systems are demonstrated to be highly efficient for the UV-light induced photocatalytic decomposition of a model organic pollutant – Acid Orange 7. The metallic nanoparticles with a diameter of ∼10 ± 2 nm (Ag) and ∼28 ± 3 nm (Au) were attached to a nanotubular TiO2 layer that consists of individual tubes of ∼100 nm of diameter, ∼2 μm in length and approx. 15 nm of wall thickness. Both metal particle catalyst systems enhance the photocatalytic decomposition significantly more on the nanotubes support than placed on a compact TiO2 surface.  相似文献   

8.
5–10 μm long, typically 200–300 nm wide, and several nanometers thick LixV2O5  0.8) nanobelts with the δ-type crystal structure were synthesized by a hydrothermal treatment of Li+-exchanged V2O5 gel. When dried at 200 °C under vacuum prior to electrochemical testing, the as-prepared nanobelts underwent the well-known δ  ε  γ-phase transition giving a mixture of ε and γ phases as a nanocomposite electrode material. Such a simple preparation procedure guarantees a yield of material with drastically enhanced initial discharge specific capacity of 490 mAh/g and great cyclability. The enhanced electrochemical performance is attributed to the complex of experimental procedures including post-synthesis treatment of the single-crystalline LixV2O5 nanobelts.  相似文献   

9.
In order to improve the mechanical properties and to optimize grain refinement of Al-Mg-Si alloy, ECAP processing with an addition of hard particle TiB2 is applied in this work. Mechanical property and microstructural evolution of Al-0.3Mg-7Si+1.5 wt.% TiB2 specimen were investigated by using hardness-testing, optical micrograph observation and electron-backscattering diffraction (EBSD). ECAP processing was done through BA route for 4 passes at room temperature. Hardness test results show that the ECAP process doubled the hardness of the specimen compared to annealed specimen, and from EBSD/OIM analysis, the ECAP processing refined grains from an average grain size of 35 μm to 0.79 μm and led to producing grains having high misorientation angle (≥15).  相似文献   

10.
A versatile route has been explored for the synthesis of nanorods of transition metal (Cu, Ni, Mn, Zn, Co and Fe) oxalates using reverse micelles. Transmission electron microscopy shows that the as-prepared nanorods of nickel and copper oxalates have diameter of 250 nm and 130 nm while the length is of the order of 2.5 μm and 480 nm, respectively. The aspect ratio of the nanorods of copper oxalate could be modified by changing the solvent. The average dimensions of manganese, zinc and cobalt oxalate nanorods were 100 μm, 120 μm and 300 nm, respectively, in diameter and 2.5 μm, 600 nm and 6.5 μm, respectively, in length. The aspect ratio of the cobalt oxalate nanorods could be modified by controlling the temperature.The nanorods of metal (Cu, Ni, Mn, Zn, Co and Fe) oxalates were found to be suitable precursors to obtain a variety of transition metal oxide nanoparticles. Our studies show that the grain size of CuO nanoparticles is highly dependent on the nature of non-polar solvent used to initially synthesize the oxalate rods. All the commonly known manganese oxides could be obtained as pure phases from the single manganese oxalate precursor by decomposing in different atmospheres (air, vacuum or nitrogen). The ZnO nanoparticles obtained from zinc oxalate rods are ~55 nm in diameter. Oxides with different morphology, Fe3O4 nanoparticles faceted (cuboidal) and Fe2O3 nanoparticles (spherical) could be obtained.  相似文献   

11.
This work shows that highly ordered and mechanically stable micrometer-long Ta2O5 nanotube arrays can be fabricated by galvanostatic anodization in a few seconds. Typically, ~ 7.7 μm long nanotubes can be grown at 1.2 A cm 2 in only 2 s. Such nanotubes can be converted to Ta3N5 nanotube arrays by nitridation. Photoelectrochemical (PEC) water splitting using AM 1.5G illumination yields for the Ta3N5 nanotube photoanode modified with cobalt phosphate (Co–Pi) remarkable photocurrents of 5.9 mA cm −2 at 1.23 VRHE and 12.9 mA cm −2 at 1.59 VRHE and after Ba-doping a value of 7.5 mA cm −2 at 1.23 VRHE is obtained.  相似文献   

12.
Sintered (300 °C) porous pellets of MoS2 were electrolysed to elemental S and Mo in molten CaCl2 (800–900 °C) under argon at 1.0–3.0 V for 1–20 h. On a graphite anode, the product was primarily S (but traces of CS2 could not yet be excluded by this work) and evaporated from the molten salt, allowing the electrolysis to continue. It then condensed to solid at the lower temperature regions of the system. The anode remained intact after repeated uses. The MoS2 pellet was highly conducting at high temperatures and could be fast electro-reduced to fine Mo powders (0.1–1.0 μm) in which the S content could be below 1000 ppm. No reduction occurred at voltages below 0.5 V. Partial reduction was seen at 0.5–0.7 V, and converted MoS2 to a mixture of MoS2 and Mo3S4, or Mo3S4 and Mo with the Mo content increasing with the voltage. Cyclic voltammetry of the MoS2 powder in a Mo-cavity electrode, together with the electrolysis results, revealed the reduction mechanism to include two steps: MoS2 to Mo3S4 at −0.28 V (potential vs. Ag/AgCl), and then to Mo at −0.43 V.  相似文献   

13.
Tin oxide submicronwires doped with Fe element were prepared by the thermal evaporation method. Morphological and structural characterizations revealed wires with sub micron size and crystalline in nature. The field electron emission from the single Fe:SnO2 wire was carried out in conventional field emission microscope. The Fowler–Nordheim plot obtained from IV characteristics of the wire showed a linear behavior typical that of metal. The field enhancement factor estimated from the slope of the F–N plot is 7455 cm?1, indicating that the field emission is from nanometric features of the emitter. A current density of 10 A/cm2 has been obtained at an applied field of 4.845 × 103 V/μm. The field emission current–time record at a current level of 1 μA for more than 3 h duration is promising for various field emissions based applications.  相似文献   

14.
The present work describes the development of a new strategy to photoelectrochemical detection of L-Dopa at low potential based on oxygen reduction on TiO2 sensitized with iron phthalocyanine (FePc/TiO2). The FePc/TiO2 composite shows a photocurrent 10-fold higher than that of pure TiO2 nanoparticles and it was 4-fold higher than that of FePc exploiting visible light. The band gaps of pure TiO2 nanoparticles, FePc and FePc/TiO2, calculated according to the Kubelka–Munk equation, were 3.22 eV, 3.11 eV and 2.82 eV, respectively. The FePc/TiO2 composite showed a low charge transfer resistance in comparison to the photoelectrode modified with FePc or TiO2. Under optimized conditions, the photoelectrochemical sensor shows a linear response range from 20 up to 190 μmol L 1 with a sensitivity of 31.8 μA L mmol 1 and limit of detection of 1.5 μmol L 1 for the detection of L-Dopa.  相似文献   

15.
A new molecule-based magnetic material [Mn2(Saloph)2(μ-OH)][Ni(bdt)2](CH3CN)2 was prepared by the metathesis of [Mn(Saloph)(H2O)(ClO4)] (S = 2) and TBA[Ni(bdt)2] (S = 1/2). In the crystal, [Ni(bdt)2]? anions form square lattices which are separated from each other by the layers of antiferromagnetically coupled binuclear cations [Mn2(Saloph)2(μ-OH)]+. The magnetic susceptibility of the material coincides with the sum of the S = 2 van Vleck dimer model and S = 1/2 Heisenberg ferromagnetic square lattice model with 2J = ?92.4 and +4.5 K, respectively. The origin of the ferromagnetic interaction can be explained by the T-shaped intermolecular overlap mode of SOMOs which spreads to the ends of [Ni(bdt)2]? molecules.  相似文献   

16.
《Polyhedron》2005,24(16-17):2165-2172
Five new hydrogen-bonded solvated iron(II) complexes of pyrazolyl- and imidazolyl-based N,N-chelating ligands have been synthesised. Water to ligand-NH hydrogen-bonded bridges occur in the pseudo-dimeric complexes {cis-[Fe(pypzH)2(NCX)2]2(μ-OH2)(H2O)2} · H2O · MeOH (where X = S or Se), and in the chain complex {cis-[Fe(pypzH)2(NCS)2](μ-OH2)}n. A “half” spin-crossover (Tc = 125 K) was observed in the dimeric X = Se complex by means of magnetic measurements and no thermal hysteresis occurred between 4 and 300 K. The crystal structure at 123 K showed Fe–N distances consistent with the magnetism. Each Fe in the dimeric unit was structurally equivalent in the HS–LS state. Removal of the solvate molecules led to HS–HS behaviour over the temperature range 4–300 K. The pseudo-dimer with X = S also showed HS–HS behaviour as did the monomeric analogue cis-[Fe(pypzH)2(NCS)2]H2O and a structurally different methanol-bridged dimer {cis-[Fe(pyimH)2(NCS)2]2(μ-MeOH)2} · 2MeOH (pypzH = 2-(1H-pyrazol-3-yl)-pyridine; pyimH = 2-(1H-imidazol-2-yl)-pyridine).  相似文献   

17.
A photoresponsive rhodium dinuclear complex having phenyltetramethylcyclopentadienyl (CpPh = η5-C5Me4Ph) and photosensitive dithionite (μ-O2SSO2) ligands, [(CpPhRh)2(μ-CH2)2(μ-O2SSO2)] (1), has been synthesized. The crystal of complex 1 (monoclinic, C2/m (No. 12), a = 24.805(2) Å, b = 29.111(2) Å, c = 10.8475(11) Å, β = 105.9830(7)°, V = 7530.0(12) Å3, Z = 8) consists of two independent molecules, 1-cis and 1-trans, with different arrangement of the CpPh ligands. The flexibility, volume, and shape of the reaction cavities around the dithionite unit of 1-cis and 1-trans in the crystal are discussed. The crystal structures of the precursors of 1, trans-[(CpPhRh)2(μ-Cl)2Cl2] and trans-[(CpPhRh)2(μ-CH2)2Me2], are also reported.  相似文献   

18.
We have developed a high temperature superconductor (HTS) micro SQUID magnetometer for molecular-based magnets. By employing the dipole approximation, we verified the flux value of 40Φ0 from the saturation magnetic moment of the ferrimagnetic microcrystal of [Mn2(H2O)2(CH3COO)][W(CN)8] · 2H2O (15 × 15 × 13 μm). Considering the relative arrangement of the sample and the SQUID loop, including the influence of the film and grease, the calculated the flux values were Φ = 71Φ0 and 31Φ0 at distances of 20 and 30 μm between the sample bottom face and the SQUID plane, respectively. Thus, the experimentally obtained flux value is reasonable.  相似文献   

19.
Micro-tubular solid-oxide fuel cell consisting of a 10-μm thick (ZrO2)0.89(Sc2O3)0.1(CeO2)0.01 (ScSZ) electrolyte on a support NiO/(ScSZ) anode (1.8 mm diameter, 200 μm wall thickness) with a Ce0.8Gd0.2O1.9 (GDC) buffer-layer and a La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF)/GDC functional cathode has been developed for intermediate temperature operation. The functional cathode was in situ formed by impregnating the well-dispersed nano-Ag particles into the porous LSCF/GDC layer using a citrate method. The cells yielded maximum power densities of 1.06 W cm−2 (1.43 A cm−2, 0.74 V), 0.98 W cm−2 (1.78 A cm−2, 0.55 V) and 0.49 W cm−2 (1.44 A cm−2, 0.34 V), at 650, 600 and 550 °C, respectively.  相似文献   

20.
A galvanostatic anodization is used to prepare long TiO2 nanotube arrays (TNTAs). TNTAs of over 100 μm in length, with similar nanotube size and structural regularity to the classic TNTAs made from potentiostatic mode, are achieved at 10 mA cm 2. After a post-anodization in a H3PO4-based electrolyte, the TNTAs with long nanotubes exhibit good adhesion to Ti substrate. The as-prepared long TNTAs yield a larger areal capacitance of 128.4 mF cm 2. Further, the long TNTAs possess a higher surface area, making them suitable as support templates for other active materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号