首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Photocatalytic organic transformation is an efficient, energysaving and environmentally friendly strategy for organic synthesis. The key to developing a green and economical route for photocatalytic organic synthesis lies in the construction of optimal photocatalysts. Covalent organic frameworks(COFs), a kind of porous crystalline materials with characteristics of high surface area, excellent porosity, and superior thermo-chemical stability, have driven people to explore their potential as photocatalysts in photocatalytic organic transformations by virtue of their structural versatility and designability. Furthermore, the insolubility of COFs makes it possible to recycle the catalysts by simple technical means. In recent years, researchers have made great efforts to develop both the design strategies of COFs as heterogeneous photocatalysts and the reaction types of photocatalytic organic transformations. In this review, we focus on the design of COF-based photocatalytic materials and analyze the influence factors of photocatalytic performance. Moreover, we summarize the application of COFbased photocatalysts in photocatalytic organic conversion. Finally, the perspectives on new opportunities and challenges in the field are discussed.  相似文献   

2.
Porous organic polymers (POPs) have emerged as a novel class of porous materials that are synthesized by the polymerization of various organic monomers with different geometries and topologies. The molecular tunability of organic building blocks allows the incorporation of functional units for photocatalytic organic transformations. Here, we report the synthesis of two POP-based photocatalysts via homopolymerization of vinyl-functionalized diaryl dihydrophenazine (DADHP) monomer ( POP1 ) and copolymerization of vinyl-functionalized DADHP and 2,2′-bipyridine monomers ( POP2 ). The fluorescence lifetimes of DADHP units in the POPs significantly increased, resulting in enhanced photocatalytic performances over homogeneous controls. POP1 is highly effective in catalysing visible-light-driven C−N bond forming cross-coupling reactions. Upon coordination with Ni2+ ions, POP2-Ni shows strong synergy between photocatalytic and Ni catalytic cycles due to the confinement effect within the POP framework, leading to high efficiency in energy, electron, and organic radical transfer. POP2-Ni displays excellent activity in catalysing C−P bond forming reactions between diarylphosphine oxides and aryl iodides. They increased the photocatalytic activities by more than 30-fold in C−N and C−P cross-coupling reactions. These POP catalysts were readily recovered via centrifugal separation and reused in six catalytic cycles without loss of activities. Thus, photosensitizer-based POPs provide a promising platform for heterogeneous photocatalytic organic transformations.  相似文献   

3.
Photocatalytic hydrogen production is crucial for solar‐to‐chemical conversion process, wherein high‐efficiency photocatalysts lie in the heart of this area. A photocatalyst of hierarchically mesoporous titanium phosphonate based metal–organic frameworks, featuring well‐structured spheres, a periodic mesostructure, and large secondary mesoporosity, are rationally designed with the complex of polyelectrolyte and cathodic surfactant serving as the template. The well‐structured hierarchical porosity and homogeneously incorporated phosphonate groups can favor the mass transfer and strong optical absorption during the photocatalytic reactions. Correspondingly, the titanium phosphonates exhibit significantly improved photocatalytic hydrogen evolution rate along with impressive stability. This work can provide more insights into designing advanced photocatalysts for energy conversion and render a tunable platform in photoelectrochemistry.  相似文献   

4.
Single‐site photocatalysts generally display excellent photocatalytic activity and considerably high stability compared with homogeneous catalytic systems. A rational structural design of single‐site photocatalysts with isolated, uniform, and spatially separated active sites in a given solid is of prime importance to achieve high photocatalytic activity. Intense attention has been focused on the design and fabrication of single‐site photocatalysts by using porous materials as a platform. Metal–organic frameworks (MOFs) have great potential in the design and fabrication of single‐site photocatalysts due to their remarkable porosity, ultrahigh surface area, extraordinary tailorability, and significant diversity. MOFs can provide an abundant number of binding sites to anchor active sites, which results in a significant enhancement in photocatalytic performance. In this focus review, the development of single‐site MOF photocatalysts that perform important and challenging chemical redox reactions, such as photocatalytic H2 production, photocatalytic CO2 conversion, and organic transformations, is summarized thoroughly. Successful strategies for the construction of single‐site MOF photocatalysts are summarized and major challenges in their practical applications are noted.  相似文献   

5.
Plasmonic catalysis has been recognised as a promising alternative to many conventional thermal catalytic processes in organic synthesis. In addition to their high activity in fine chemical synthesis, plasmonic photocatalysts are also able to maintain control of selectivity under mild conditions by utilising visible-light as an energy source. This review provides an overview of the recent advances in organic transformations with plasmonic metal nanostructures, including selective reduction, selective oxidation, cross-coupling and addition reactions. We also summarize the photocatalysts and catalytic mechanisms involving surface plasmon resonance. Finally, control of reaction pathway and strategies for tailoring product selectivity in fine chemical synthesis are discussed.  相似文献   

6.
Visible-light-photocatalyzed methods employed in synthetic transformations present attractive properties such as environmentally friendly, safety, availability and excellent functional group tolerance. In this regard, research on the visible-light photocatalytic incorporation of the trifluoromethyl CF3 moiety into organic substrates, in particular, has contributed to a clear evolution of the field of photocatalysis. Although this particular area is constantly evolving and has been reviewed, the last five years have experienced an outburst of seminal and significant photocatalytic trifluoromethylation examples that are leading the way and opening new synthetic avenues. Recent review articles on Ru- and Ir-based photocatalytic trifluoromethylation reactions have borne witness of this evolution. Although this account will show the new Ru- and Ir-based photocatalytic trifluoromethylations, Sections 2 and 3 will also illustrate other photocatalytic systems, such as organic dyes, organic semiconductors and newly-developed all-organic photocatalysts. All the known and reviewed strategies for photocatalytic trifluoromethylation reactions of olefins and (hetero)aromatic compounds will not be discussed but will be summarized in two figures (Figures 4 and 5), and new examples (2015–present) will be presented and discussed.  相似文献   

7.
Two new covalent organic frameworks (COFs) were synthesized from 4,4′,4′′,4′′′-(pyrene-1,3,6,8-tetrayl)tetraaniline and 2,5-dimethoxyterephthalaldehyde (Py-DMTA-COF) or 2′,5′-dimethoxy-[1,1′:4′,1′′-terphenyl]-4,4′′-dicarbaldehyde (Py-DMTPDA-COF) under solvothermal conditions. These two COFs were further facilely developed as efficient photocatalytic platforms for the synthesis of thiophosphinates. Py-DMTA-COF exhibited better photocatalytic activity, broad substrate applicability, and excellent recycling capacity for the preparation of thiophosphinates from P(O)H compounds and thiols compared to Py-DMTPDA-COF. This methodology was further extended to the seamless gram-scale production of target phosphorothioate derivatives. The results demonstrate that COFs can provide a robust platform for developing metal-free, base-free, highly efficient, and reusable heterogeneous photocatalysts for organic transformations.  相似文献   

8.
For metal-free, organic conjugated polymer-based photocatalysts, synthesis of defined nanostructures is still highly challenging. Here, we report the formation of covalent triazine framework (CTF) nanoparticles via a size-controllable confined polymerization strategy. The uniform CTF nanoparticles exhibited significantly enhanced activity in the photocatalytic formation of dibenzofurans compared to the irregular bulk material. The optoelectronic properties of the nanometer-sized CTFs could be easily tuned by copolymerizing small amounts of benzothiadiazole into the conjugated molecular network. This optimization of electronic properties led to a further increase in observed photocatalytic efficiency, resulting in total an 18-fold enhancement compared to the bulk material. Full recyclability of the heterogeneous photocatalysts as well as catalytic activity in dehalogenation, hydroxylation and benzoimidazole formation reactions demonstrated the utility of the designed materials.  相似文献   

9.
In recent years, organic chemists have devoted a great deal of effort towards the implementation of novel green photocatalytic synthetic protocols. To this end, the development of new effective, non-toxic, inexpensive photocatalysts, which are capable of driving value-added chemical transformations, is highly desirable. Interestingly, phenols fulfill all these requirements due to their outstanding physicochemical features, therefore emerging as promising metal-free photocatalytic platforms for organic synthesis. This Perspective aims at highlighting the most recent applications of phenols in organic photocatalysis. More specifically, phenolate anions, formed upon deprotonation of phenols, are photo-active organic intermediates that may absorb light within the visible region. Thus, when in the excited states, these anions may be used as reductants to generate reactive open shell species from suitable precursors under mild operative conditions. Alternatively, phenolate anions and suitable radical precursors can form electron donor-acceptor (EDA) complexes. Specifically, the photochemical activity of these molecular aggregates can be used to initiate organic radical reactions. Lastly, forward-looking opportunities within this research field have been discussed.  相似文献   

10.
Visible‐light photocatalysis has evolved over the last decade into a widely used method in organic synthesis. Photocatalytic variants have been reported for many important transformations, such as cross‐coupling reactions, α‐amino functionalizations, cycloadditions, ATRA reactions, or fluorinations. To help chemists select photocatalytic methods for their synthesis, we compare in this Review classical and photocatalytic procedures for selected classes of reactions and highlight their advantages and limitations. In many cases, the photocatalytic reactions proceed under milder reaction conditions, typically at room temperature, and stoichiometric reagents are replaced by simple oxidants or reductants, such as air, oxygen, or amines. Does visible‐light photocatalysis make a difference in organic synthesis? The prospect of shuttling electrons back and forth to substrates and intermediates or to selectively transfer energy through a visible‐light‐absorbing photocatalyst holds the promise to improve current procedures in radical chemistry and to open up new avenues by accessing reactive species hitherto unknown, especially by merging photocatalysis with organo‐ or metal catalysis.  相似文献   

11.
Photoactive two-dimensional covalent organic frameworks (2D-COFs) have become promising heterogenous photocatalysts in visible-light-driven organic transformations. Herein, a visible-light-driven selective aerobic oxidation of various small organic molecules by using 2D-COFs as the photocatalyst was developed. In this protocol, due to the remarkable photocatalytic capability of hydrazone-based 2D-COF-1 on molecular oxygen activation, a wide range of amides, quinolones, heterocyclic compounds, and sulfoxides were obtained with high efficiency and excellent functional group tolerance under very mild reaction conditions. Furthermore, benefiting from the inherent advantage of heterogenous photocatalysis, prominent sustainability and easy photocatalyst recyclability, a drug molecule (modafinil) and an oxidized mustard gas simulant (2-chloroethyl ethyl sulfoxide) were selectively and easily obtained in scale-up reactions. Mechanistic investigations were conducted using radical quenching experiments and in situ ESR spectroscopy, all corroborating the proposed role of 2D-COF-1 in photocatalytic cycle.  相似文献   

12.
Recent advances in direct‐use plasmonic‐metal nanoparticles (NPs) as photocatalysts to drive organic synthesis reactions under visible‐light irradiation have attracted great interest. Plasmonic‐metal NPs are characterized by their strong interaction with visible light through excitation of the localized surface plasmon resonance (LSPR). Herein, we review recent developments in direct photocatalysis using plasmonic‐metal NPs and their applications. We focus on the role played by the LSPR of the metal NPs in catalyzing organic transformations and, more broadly, the role that light irradiation plays in catalyzing the reactions. Through this, the reaction mechanisms that these light‐excited energetic electrons promote will be highlighted. This review will be of particular interest to researchers who are designing and fabricating new plasmonic‐metal NP photocatalysts by identifying important reaction mechanisms that occur through light irradiation.  相似文献   

13.
The photocatalytic reactivities of various Ti-based photocatalysts have been investigated for various different types of reactions in order to achieve as highly efficient photocatalytic reactivities as possible. The reactivity of powdered TiO2 is dramatically enhanced by the addition of small amounts of Pt which initiates an effective charge separation of the photo-formed electrons and holes. The highly dispersed titanium oxide species prepared and encapsulated within the zeolite cavities as well as into the SiO 2 matrices exhibit high photocatalytic reactivities due to the high reactivities of their charge transfer excited states. With regard to the use of visible light, ion implantation of metal ions such as Cr or V into powdered TiO2 catalysts has been found to modify the electronic state of TiO 2 , resulting in the shift of the absorption band to longer wavelength regions, i.e., into the visible light region. The extent of the shift strongly depends on the type and concentration of the implanted metal. The present study focuses on the preparation of the photocatalysts, a detailed characterization of the active sites and their dynamics, the direct detection of the reaction intermediate species, as well as a clarification of the mechanisms behind the observed photocatalytic reactions at the molecular level. This work significantly contributes to advances in the design of photocatalysts which will be able to operate efficiently and effectively not only under UV irradiation but, most ideally, under visible light.  相似文献   

14.
The design of photocatalytic processes is important for a sustainable society. Key to these photocatalytic reactions is electron transfer. This article is focused on titanium dioxide photocatalyzed organic synthesis and the design of a new [2+2] cycloaddition reaction based on the electron transfer process. Electron transfer - not only between the substrate and the photocatalyst but also inter- and intramolecularly – is crucial for the reaction design. Radical cations were generated by the photocatalyst and trapped by alkenes. The resultant cyclobutyl radical cations were immediately reduced by the aryl rings via intramolecular electron transfer to obtain cyclobutane rings. The outcome of the reaction was controlled by substitution of the aryl ring and the linker connecting the aryl ring to the enol ether. The carefully designed substrates were highly effective for photocatalytic cycloaddition.  相似文献   

15.
A photocatalytic formal [3+2] cycloaddition of 2H‐azirines with alkynes has been achieved under irradiation by visible light in the presence of organic dye photocatalysts. This transformation provides efficient access to highly functionalized pyrroles in good yields and has been applied to the synthesis of drug analogues. A primary trial of photocascade catalysis merging energy transfer and redox neutral reactions was shown to be successful.  相似文献   

16.
Photocatalytic reactions occurring at semiconductor particles/solution interfaces can be applied to organic syntheses. In this review article, examples of photocatalytic syntheses of cyclic amino acids by suspended semiconductor particles, e.g., titanium(IV) oxide or cadmium(II) sulfide are introduced and interpreted. Different from the photocatalytic decomposition of pollutants under aerobic conditions, selective conversion of organic compounds can be driven by the photocatalytic reactions under deaerated conditions.  相似文献   

17.
In this paper, photocatalytic degradation of commercial textile azo dyes catalyzed by titanium dioxide and modified titanium dioxide with Ag metal (1% w/w) in aqueous solution under irradiation with a 400 W high-pressure mercury lamp is reported. The effect of various parameters such as irradiation time of UV light, amount of photocatalyst, flow rate of oxygen, pH and temperature for the Ag-TiO2 photocatalyst were investigated. Kinetic investigations of photodegradation indicated that reactions obey improved Langmuir-Hinshelwood model and pseudo-first-order law. The rate constant studies of photocatalytic degradation reactions for Ag-TiO2 and TiO2 photocatalysts indicated that in all cases the rate constant of the reaction for Ag-TiO2 was higher than that of TiO2.  相似文献   

18.
《中国化学快报》2021,32(10):2975-2984
Metal-organic frameworks (MOFs) are currently popular porous materials with research and application value in various fields. Aiming at the application of MOFs in photocatalysis, this paper mainly reviews the main synthesis methods of MOFs and the latest research progress of MOFs-based photocatalysts to degrade organic pollutants in water, such as organic dyes, pharmaceuticals and personal care products, and other organic pollutants. The main characteristics of different synthesis methods of MOFs, the main design strategies of MOFs-based photocatalysts, and the excellent performance of photocatalytic degradation of organic pollutants are summarized. At the end of this paper, the practical application of MOFs, the current limitations of MOFs, the synthesis methods of MOFs, and the future development trend of MOFs photocatalysts are explained.  相似文献   

19.
Zeyin Zhou 《合成通讯》2014,44(21):3189-3198
A simple, convenient, and efficient new method for synthesis of 2-aryl benzothiazoles under mild conditions with nonmetal catalyst has been developed. Boron–dipyrromethene (BODIPY) dyes were used as photocatalysts for aerobic oxidative reactions of amine with 2-aminothiophenol. The approach will be very useful for the synthesis of benzothiazole derivatives and the development of photocatalytic reactions.  相似文献   

20.
We describe a screening methodology that can be used to quickly determine the effectiveness of newly synthesized photocatalysts. We were particularly interested in measuring the destruction of organic molecules painted onto a photocatalytic surface by spraying, with destruction proceeding in ambient air (as a model for airborne toxin destruction). Our method can utilize photocatalysts that are synthesized as powders (such as doped and undoped titanium oxide) and which are then calcined onto a glass substrate disk at 600°C. Herein, we used UV illumination of Aeroxide P-25 TiO(2), but the method is general and can accommodate any region of the light spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号