首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 541 毫秒
1.
Hydrous vanadium oxide (denoted as VOx·yH2O) deposited at 0.4 V shows promising capacitive behavior in aqueous media containing concentrated Li ions. VOx·yH2O annealed in air at 300 °C for 1 h shows highly reversible Li-ion intercalation/de-intercalation behavior with specific capacitance reaching ca. 737 and 606 F g? 1 at 25 and 500 mV s? 1 in 12 M LiCl between ?0.2 and 0.8 V. In 14 M LiCl, retention of specific capacitance is about 95% when the scan rate is increased from 25 to 500 mV s? 1. This work is the first report showing the ultrahigh rate of Li-ion intercalation/de-intercalation in VOx·yH2O. A so-called Li-ion supercapacitor of the asymmetric type consisting of a VOx.yH2O cathode and a WO3.zH2O anode is proposed here.  相似文献   

2.
《Solid State Sciences》2007,9(11):1006-1011
Three complexes, M2(bpy)2(bpdc)2·xH2O [M = Cu, x = 0; M = Zn or Cd, x = 2], have been hydrothermally synthesized by 1,1′-biphenyl-2,2′-dicarboxylic acid (H2bpdc) with 2,2′-bipyridine (bpy) to form binuclear molecules. In each, the two bpdc groups align the two opposing planar [M(bpy)]2+ cations. The molecules are connected by C–H⋯O hydrogen bonds, π–π stacking, and C–H⋯π interactions to form three dimensional supramolecular networks. Furthermore, at room temperature, complex 3 exhibits strong photoluminescence.  相似文献   

3.
《Polyhedron》2005,24(16-17):2242-2249
Two heterobimetallic coordination polymers, [Cu(2,4-pydc)2Mn(H2O)4]x (1) and [Cu(2,5-pydc)2Mn(H2O)2]x · 4xH2O (2), have been synthesized and structurally characterized by single crystal X-ray diffraction. Both compounds have extended 2-D sheet structures. In 1 the copper centers are linked in chains by double ligand bridges and these chains are cross-linked through the manganese coordination spheres and O–C–O bridges to form polymeric sheets. In 2 separate O–C–O bridged Cu and Mn chains are connected in an alternating array by additional ligand bridging to generate the overall 2-D structure. Analysis of magnetic data of 1 reveals that ferromagnetic exchange between the O–C–O bridged copper and manganese centers dominates the magnetic properties of this system. The magnetic data for 2 fit well to a model incorporating antiferromagnetic exchange in independent S = 1/2 and S = 5/2 linear chains with J(Cu) = −0.073 cm−1 and J(Mn) = −0.32 cm−1. Unlike the situation in 1, there is no evidence for heterometallic exchange. In both 1 and 2 the significant exchange occurs via O–C–O bridges. To study the effect of thermal dehydration on the magnetic properties of these systems, the compounds Cu(2,4-pydc)2Mn · H2O (1d) and Cu(2,5-pydc)2Mn · H2O (2d) were synthesized and studied.  相似文献   

4.
A new binary Mn0.5Fe0.5(H2PO4)2·xH2O powder was synthesized by simple and cost-effective method using phosphoric acid, manganese and iron metals as starting chemicals. The synthesized solid shows the complex thermal transformations and the final decomposition product is a new binary manganese iron cyclo-tetraphosphate, MnFeP4O12. The X-ray diffraction and FTIR results indicate that the synthesized new binary Mn0.5Fe0.5(H2PO4)2·xH2O and the decomposition MnFeP4O12 powders are a pure monoclinic phase with space group P21/n (Z = 2) and C2/c (Z = 4), respectively. The particle morphologies of Mn0.5Fe0.5(H2PO4)2·xH2O and MnFeP4O12 powders appear as the rod-like tetragonal shape and show a high agglomeration of small particles, which are similar to the case of Mn(H2PO4)2·2H2O and Fe2P4O12, respectively. Room temperature magnetization results show a ferromagnetic behavior of the Mn0.5Fe0.5(H2PO4)2·xH2O and MnFeP4O12 powders, having the hysteresis loops in the range of ?10,000 Oe < H < +10,000 Oe with the specific magnetization values of 25.63 and 13.14 emu/g at 10 kOe, respectively. The lower magnetizations of Mn0.5Fe0.5(H2PO4)2·xH2O and MnFeP4O12 than those of Fe(H2PO4)2·2H2O and Fe2P4O12 powders indicate the presence of Mn ions in substitution position of Fe ions.  相似文献   

5.
The molar enthalpies of solution of 2MgO · 2B2O3 · MgCl2 · 14H2O in approximately 1 mol · dm−3 aqueous hydrochloric acid (HCl) and of MgCl2 · 6H2O(s) in aqueous (approximately 1 mol · dm−3 HCl + MgCl2 + H3BO3) at T=298.15 K were determined. From a combination of these results with measured enthalpies of solution of boric acid (H3BO3) in HCl(aq) and of magnesium oxide (MgO) in aqueous (HCl + H3BO3) solution, together with the standard molar enthalpies of formation of MgO(s), H3BO3(s), MgCl2 · 6H2O(s) and H2O(l), the standard molar enthalpy of formation of −(8812 ± 3) kJ · mol−1 of 2MgO · 2B2O3 · MgCl2 · 14H2O was obtained. Thermodynamic properties of this compound were also calculated by group contribution method.  相似文献   

6.
Two pure zinc borates with microporous structure 3ZnO·3B2O3·3.5H2O and 6ZnO·5B2O3·3H2O have been synthesized and characterized by XRD, FT-IR, TG techniques and chemical analysis. The molar enthalpies of solution of 3ZnO·3B2O3·3.5H2O(s) and 6ZnO·5B2O3·3H2O(s) in 1 mol · dm−3 HCl(aq) were measured by microcalorimeter at T = 298.15 K, respectively. The molar enthalpies of solution of ZnO(s) in the mixture solvent of 2.00 cm3 of 1 mol · dm−3 HCl(aq) in which 5.30 mg of H3BO3 were added were also measured. With the incorporation of the previously determined enthalpy of solution of H3BO3(s) in 1 mol · dm−3 HCl(aq), together with the use of the standard molar enthalpies of formation for ZnO(s), H3BO3(s), and H2O(l), the standard molar enthalpies of formation of −(6115.3 ± 5.0) kJ · mol−1 for 3ZnO·3B2O3·3.5H2O and −(9606.6 ± 8.5) kJ · mol−1 for 6ZnO·5B2O3·3H2O at T = 298.15 K were obtained on the basis of the appropriate thermochemical cycles.  相似文献   

7.
A novel hydrothermal coating process has been developed to deposit amorphous Ni(OH)2·H2O over octahedral α-Fe2O3 particles by treating aqueous dispersion of the preformed cores in Ni(NO3)2/CH3COONa solution. NiO(core)/Fe2O3(shell) composite particles were prepared by air sintering of the Ni(OH)2·H2O(shell)/Fe2O3(core) particles at 200–500°C for 1–6 h. The changes of morphology, structure and weight of the hydrothermal and sintering products were studied by means of TEM, XRD, XPS, TG and IR analyzers. The nucleation and growth model was suggested for the non-isothermal decomposition of Ni(OH)2·H2O coatings and the kinetic equation was derived from the non-linear regression of the TG data. The activation in the thermal-decomposition process is 73.8 kJ mol−1 and the pre-exponential factor is 1.95×104 s−1.  相似文献   

8.
《Tetrahedron: Asymmetry》2005,16(4):809-815
An efficient and stereospecific synthesis of chiral 3,5-diaminopiperidin-2-one as a novel conformationally restricted surrogate of 2,4-diaminobutanoyl (Dab)-Gly dipeptide has been achieved. The key steps include (i) ruthenium tetroxide (RuO4) oxidation of N-Boc-2-azidomethylpyrrolidines with a catalytic amount of RuO2·xH2O in a two-phase system of aq NaIO4/AcOEt and (ii) intramolecular transamidation of the resulting 2-azidomethylpyrrolidin-2-ones with 10% Pd–C in MeOH/H2O (12/1, v/v) under an H2 atmosphere (3 atm). This methodology represents a powerful tool for the synthesis of Dab-Gly dipeptide surrogate.  相似文献   

9.
New compounds of aspartic acid Cs(ASP) · nH2O (n = 0, 1) have been synthesized and characterized by XRD, IR and Raman spectroscopy as well as TG. The structural formula of this new compound was Cs(ASP) · nH2O (n = 0, 1). The enthalpy of solution of Cs(ASP) · nH2O (n = 0, 1) in water were determined. With the incorporation of the standard molar enthalpies of formation of CsOH(aq) and ASP(s), the standard molar enthalpy of formation of −(1202.9 ± 0.2) kJ · mol−1 of Cs(ASP) and −(1490.7 ± 0.2) kJ · mol−1 of Cs(ASP) · H2O were obtained.  相似文献   

10.
《Comptes Rendus Chimie》2014,17(5):490-495
A new complex of [Ni3(dcp)2(H2O)10] (1) (H3dcp = 3,5-pyrazoledicarboxylic acid) has been synthesized from H3dcp and Ni(NO3)2·6H2O by hydrothermal reaction. Complex 1 has the discrete trinuclear structure. Three Ni(II) ions are bridged by two dcp3− ligands, with 10 coordinated water molecules as terminal ligands. The molecules of [Ni3(dcp)2(H2O)10] extend into three-dimensional supramolecular architectures by intermolecular O–H···O hydrogen bonds as well as π-π stacking interactions. Magnetic susceptibility measurement shows that a weak antiferromagnetic interaction is operative between nickel(II) ions and an excellent simulation of the experimental data gives D = 5.27 cm−1, J = −2.19 cm−1 and g = 2.05.  相似文献   

11.
The (solid + liquid) phase equilibria of the ternary systems (CsBr + LnBr3 + H2O) (Ln = Pr, Nd, Sm) at T = 298.2 K were studied by the isothermal solubility method. The solid phases formed in the systems were determined by the Schreinemakers wet residues technique, and the corresponding phase diagrams were constructed based on the measured data. Each of the phase diagrams, with two invariant points, three univariant curves, and three crystallization regions corresponding to CsBr, Cs2LnBr5·10H2O and LnBr3·nH2O (n = 6, 7), respectively, belongs to the same category. The new solid phase compounds Cs2LnBr5·10H2O are incongruently soluble in water, and they were characterized by chemical analysis, XRD and TG-DTG techniques. The standard molar enthalpies of solution of Cs2PrBr5·10H2O, Cs2NdBr5·10H2O and Cs2SmBr5·10H2O in water were measured to be (52.49 ± 0.48) kJ · mol−1, (49.64 ± 0.49) kJ · mol−1 and (50.17 ± 0.48) kJ · mol−1 by microcalorimetry under the condition of infinite dilution, respectively, and their standard molar enthalpies of formation were determined as being −(4739.7 ± 1.4) kJ · mol−1, −(4728.4 ± 1.4) kJ · mol−1 and −(4724.4 ± 1.4) kJ · mol−1, respectively. The fluorescence excitation and emission spectra of Cs2PrBr5·10H2O, Cs2NdBr5·10H2O and Cs2SmBr5·10H2O were measured. The results show that the upconversion spectra of the three new solid phase compounds all exhibit a peak at 524 nm when excited at 785 nm.  相似文献   

12.
《Solid State Sciences》2007,9(7):644-652
Na2Cu(PO2NH)4·7H2O and KxNa2−xCu(PO2NH)4·7H2O (x  0.5) were synthesized by gel crystallization in sodium silicate gels. The crystal structures were solved by single-crystal X-ray methods and found to be isotypic (Pnma, Z = 4; Na2Cu(PO2NH)4·7H2O: a = 627.5(2) pm, b = 1456.0(3) pm, c = 1900.5(4) pm, R1 = 0.0352; K0.47Na1.53Cu(PO2NH)4·7H2O: a = 632.2(2) pm, b = 1460.0(3) pm, c = 1936.4(4) pm, R1 = 0.0345). The P4N4 rings of the tetrametaphosphimate anion exhibit a distorted chair-2 conformation with admixtures of saddle and crown conformation. The M+ ions are six- and sevenfold coordinated by oxygen atoms, the Cu2+ ions are fivefold coordinated, respectively. The MO7 and the CuO5 units form pairs of face-sharing polyhedra, which are connected by common corners forming chains and are further interconnected by tetrametaphosphimate anions, forming a three-dimensional network structure with channels along [100] and [010]. The MO6 units form chains of face-sharing polyhedra, which are situated in the channels along [100]. Extended hydrogen bonding reinforces the three-dimensional framework structure of the compounds. 23Na-MAS NMR experiments were conducted to verify the K/Na distribution on the M sites derived from the X-ray crystal structure refinement.  相似文献   

13.
Layered material of zinc hydroxychlorides (Zn5(OH)8Cl2·nH2O: ZHC), which is one of the basic zinc salts (BZS), was synthesized from ZnO nano-particles aged with aqueous ZnCl2 solutions at different temperatures ranging from 6 to 140 °C for 48 h. X-ray diffraction (XRD) results indicated that the diffraction peaks of ZnO completely disappeared by aging at 6 °C and the ZHC peaks were developed. By increasing the aging temperature, crystallinity of the layered structure was improved. At 6 °C, the ZHC particles were thin hexagonal plate particles with sizes ranging from 1 to 3 μm. The particle size of ZHC was independent of aging temperature. The atomic Cl/Zn ratios of all the ZHC materials were almost 0.2 less than 0.4 of the theoretical ratio, indicating that the synthetic ZHC is Cl-deficient. It seemed that half of Cl atoms in the layer were replaced with HCO3 and/or OH. The specific surface areas of ZHC estimated from N2 adsorption isotherms were ca. 10 m2 g−1 and were independent of the aging temperature. However, the H2O monolayer adsorption capacity per unit surface area (nw) for all the samples was higher than that of ZnO particles, revealing the high affinity of ZHC to H2O molecules. The nw values were increased by reducing the crystallinity of ZHC. This enhancement of H2O adsorption selectivity was thought to be related with less-crystallized parts of the particles.  相似文献   

14.
An organic–inorganic poly(3,4-ethylenedioxythiophene) (PEDOT)/RuO2·xH2O nanocomposite (approximately 1 wt.% RuO2) has been successfully prepared for the first time under microwave irradiation within 5 min with power 900 W via in situ chemical polymerization. The morphology and structure of the resultant material is characterized by transmission electron microscope and Fourier transform infrared. Moreover, the electrochemical properties of the synthesized nanocomposite can be controlled by adjusting the annealing temperature, which is definitely illustrated by cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectra. Electrochemical data have shown that the PEDOT/RuO2·xH2O nanocomposite annealed at 150 °C possesses the most favorable charge/discharge ability with a specific capacitance of 153.3 F g−1 at a current density of 150 mA g−1 and the high efficient utilization of PEDOT at various current densities. Furthermore, such composite has a less capacitance degradation of 23.8% after 1,000 continuous cycles. The improved electrochemical performance are mainly attributed to the large electroactive surface of nanocomposite and the existence of amorphous RuO2·xH2O particles as well as a synergistic effect of the polymer PEDOT and annealed RuO2·xH2O. Thus, the PEDOT/RuO2·xH2O nanocomposite annealed at 150 °C can act as a promising electroactive material for supercapacitor application.  相似文献   

15.
The solubility in the three-component (NH4)2SeO4–BeSeO4–H2O system is studied at 25 °C by the method of isothermal decrease of supersaturation. (NH4)2Be(SeO4)2·2H2O crystallizes from solutions containing 31.35 mass% beryllium selenate and 30.66 mass% ammonium selenate up to solutions containing 26.84 mass% beryllium selenate and 46.84 mass% ammonium selenate. The X-ray powder diffraction data show that (NH4)2Be(SeO4)2·2H2O is isostructural with the respective K2Be(SeO4)2·2H2O, K2Be(SO4)2·2H2O and Rb2Be(SO4)2·2H2O. (NH4)2Be(SeO4)2·2H2O crystallizes in the monoclinic space group P21/c: a = 11.747(3) Å, b = 12.212(4) Å, c = 7.649(2) Å, β = 96.94(3)°, V = 1089.3(3) Å3, Z = 4. Vibrational spectra (infrared and Raman) of the title compound are presented and discussed with respect to the internal modes of both the ammonium and the selenate tetrahedra, hydrogen bond strengths and the lattice vibrations of the BeO4 tetrahedra (skeleton vibrations).  相似文献   

16.
A systematic investigation of the reactions of Cu(ClO4)2 · 6H2O with maleamic acid (H2L) in the presence of 2,2′-bipyridine (bpy) has been carried out. The chemical and structural identity of the products depends on the solvent, the absence or presence of external hydroxides in the reaction mixture and the molar ratio of the reactants. Various reaction schemes have led to the isolation of the complexes [Cu2(HL)2(bpy)2(H2O)2](ClO4)2 (1), [Cu2(HL)2(bpy)2(H2O)2](ClO4)2 · 2H2O (1 · 2H2O), [Cu(L′′)(bpy)]n · 2nH2O (2 · 2nH2O), [Cu2(L′′)(bpy)2(H2O)2]n(ClO4)2n · 0.5nH2O (3 · 0.5nH2O), [Cu2(L′′)2(bpy)2] · 2MeOH (5 · 2MeOH), [Cu2(L′)2(bpy)2(ClO4)2] (6) and [Cu(ClO4)2(bpy)(MeCN)2] (7b), where L′′2? and L′? are the maleate(?2) and monomethyl maleate(?1) ligands, respectively. The HL? ion has been transformed to L′′2? and L′? in the known compounds 2 · 2nH2O and 6, respectively, via metal ion-assisted processes involving hydrolysis (2 · 2nH2O) and methanolysis (6) of the primary amide group. The reaction that leads to 6 takes place through the formation of the mononuclear complex [Cu(ClO4)2(bpy)(MeOH)2] (7a), whose structure was assigned on the basis of its spectral similarity with the structurally characterized complex 7b. The structures of the cations in 1 and 1 · 2H2O consists of two CuII atoms bridged by the carboxylate groups of the two HL? ligands, each exhibiting the less common η2 coordination mode; a chelating bpy molecule and a H2O ligand complete square pyramidal coordination at each metal centre. The structure of the dinuclear repeating unit in the 1D coordination polymer 3 · 0.5nH2O consists of two CuII atoms bridged by two syn,syn η1:η1:μ2 carboxylate groups belonging to two L′′2? ions; each ligand bridged two neighboring [CuII,II2] units thus promoting the formation of a helical chain. The structure of the dinuclear molecule of complex 5 · 2MeOH consists of two CuII atoms bridged by two η2 carboxylate groups from two L′′2? ligands; the second carboxylate group of each maleate(?2) ligand is monodentately coordinated to CuII, creating a remarkable seven-membered chelating ring. The L′? ion behaves as a carboxylate-type ligand in 6, with the carboxylate group being in the familiar syn,syn η1:η1:μ2 coordination mode; a chelating bpy molecule and a coordinated ClO4? complete five-coordination at each CuII centre. The crystal structures of the complexes are stabilized by various H-bonding patterns. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the ligands.  相似文献   

17.
The important zinc borate of 2ZnO · 3B2O3 · 3H2O has been synthesized and characterized by means of chemical analysis, XRD, FT-IR, and DTA–TG techniques. The molar enthalpies of solution of H3BO3(s) in HCl · 54.561H2O, of ZnO(s) in the mixture of HCl · 54.561H2O and calculated amount of H3BO3, and of 2ZnO · 3B2O3 · 3H2O(s) in HCl · 54.604H2O were measured, respectively. With the use of the standard molar enthalpies of formation for ZnO(s), H3BO3(s), and H2O(l), the standard molar enthalpy of formation of ?(5561.7 ± 4.9) kJ · mol?1 for 2ZnO · 3B2O3 · 3H2O(s) was obtained. Thermodynamic properties of this compound were also calculated by a group contribution method.  相似文献   

18.
《Solid State Sciences》2007,9(3-4):322-328
Electrochemical measurements demonstrate that magnesium surfaces can be protected by alkyl carboxylate. In a nearly neutral pH solution of sodium decanoate, the reduced corrosion rate and a passivation behaviour are attributed to the formation of Mg(C10H19O2)2(H2O)3 (Mg(C10)2) at the magnesium surface whereas heptanoate Mg(C7H13O2)2(H2O)3 (Mg(C7)2) is not efficient in such media. The crystal structures of the two metal carboxylates Mg(C7)2 and Mg(C10)2 are determined by X-ray diffraction. Single crystal data: Mg(C7)2, P21/a, a = 9.130(5) Å, b = 8.152(5) Å, c = 24.195(5) Å, β = 91.476(5)°, V = 1800.3(15) Å3, Dx = 1.242 g cm−3, Z = 4. Synchrotron powder data: Mg(C10)2, P21/a, a = 9.070(3) Å, b = 8.165(1) Å, c = 32.124(1) Å, β = 98.39(1)°, V = 2353.85(8) Å3, Dx = 1.188 g cm−3, Z = 4. Their layered structures are quite similar and differ mainly by the length of the hydrophobic chains. They consist of two planes of O-octahedra centred by Mg atoms, parallel to (001). The distorted octahedra are constituted by three oxygen atoms from carboxylate groups and by three oxygen atoms coming from water molecules. The layers are connected by hydrogen bonds. The carboxylate chains are located perpendicularly and on both sides of these planes. One carboxylate chain is bridging the Mg atom along [010] while the other is monodendate. The presence of structural water is confirmed by thermal analyses.  相似文献   

19.
Syntheses of three benzaldazine compounds 13 with the general formula Ar1(CH = N–N = HC)Ar2 (Ar1 = Ar2 = 2-OH-3,5-tBu2C6H2 (1), Ar1 = Ar2 = 2-BrC6H4 (2), Ar1 = ortho-C6H4(NHC6H3-Me2-2,6), Ar2 = C6H4F-2 (3)) are described. All compounds were characterized by elemental analysis, 1H NMR, 13C NMR, IR spectroscopy and single-crystal X-ray crystallography. The different supramolecular structures were obtained through different weak interactions (C ? H···O, O ? H···N and π···π interactions for 1; C ? H···Br and Br···Br interactions for 2; C ? H···F and C ? H···N interactions for 3). Compound 1 shows solvent-dependent fluorescent properties with blue to green emission on the increasing of the solvent polarity. Compounds 2, 3 show blue photoluminescence in different solvents.  相似文献   

20.
The solubilities in the three-component systems MIO3–Be(IO3)2–H2O (M = K, NH4+, Rb, Cs) were studied at 25 °C by the method of isothermal decrease of supersaturation. It has been established that double salts, K2Be(IO3)4·2H2O, (NH4)2Be(IO3)4·2H2O, and Rb2Be(IO3)4·2H2O, crystallize from the ternary solutions within wide concentration ranges. Both the X-ray powder diffraction and the spectroscopic studies (infrared and Raman) reveal that the title compounds are isostructural. They crystallize in the monoclinic space group P2/m with lattice parameters: K2Be(IO3)4·2H2O – a = 14.218(5) Å, b = 6.747(2) Å, c = 5.765(2) Å, β = 98.74(4)°, V = 546.6(2) Å3; (NH4)2Be(IO3)4·2H2O – a = 14.414(4) Å, b = 6.838(2) Å, c = 5.947(2) Å, β = 99.52(4)°, V = 578.0(2) Å3; Rb2Be(IO3)4·2H2O – a = 14.423(4) Å, b = 6.867(2) Å, c = 5.743(3) Å, β = 98.15(3)°, V = 562.9(3) Å3.Infrared spectroscopic experiments show that comparatively strong hydrogen bonds are formed in the potassium and rubidium salts as deduced from the wavenumbers of νOD of matrix-isolated HDO molecules (isotopically dilute samples) owing to the strong Be–OH2 interactions (synergetic effect). However, the IO3 ions in the ammonium compound are involved in hydrogen bonds with NH4+ ions additionally to those with water molecules and as a result of these intermolecular interactions the proton acceptor strength of the iodate ions decreases (anti-cooperative effect), thus leading to the formation of weaker hydrogen bonds in this compound (bonds of moderate strength) as compared to those formed in the potassium and rubidium ones. The normal vibrations of other entities (IO3 ions and BeO4 tetrahedra (skeleton vibrations)) are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号