首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two methylated thienocarbazoles and two of their synthetic nitro-precursors have been examined by absorption, luminescence, laser flash photolysis and photoacoustic techniques. Their spectroscopic and photophysical characterization involves fluorescence spectra, fluorescence quantum yields and lifetimes, and phosphorescence spectra and phosphorescence lifetimes for all the compounds. Triplet-singlet difference absorption spectra, triplet molar absorption coefficients, triplet lifetimes, intersystem crossing S1 --> T1 and singlet molecular oxygen yields were obtained for the thienocarbazoles. In the case of the thienocarbazoles it was found that the lowest-lying singlet and triplet excited states, S1 and T1, are of pi,pi* origin, whereas for their precursors S1 is n,pi*, and T1 is pi,pi*. In both thienocarbazoles it appears that the thianaphthene ring dictates the S1 --> T1 yield, albeit there is less predominance of that ring in the triplet state of the linear thienocarbazole, which leads to a decrease in the observed phiT value.  相似文献   

2.
Photochemical and photophysical processes of organosilicon compounds have been studied. Dual (local and CT) emission has been found in aromatic disilanes. The intramolecular CT fluorescence has a broad and structureless band with a large Stokes shift. The CT process in the excited state occurs very rapidly with a time constant less than 10 ps even in rigid glass at 77 K This finding shows that the CT mechanism is quite different from TICT (or OICT) which needs twisting or internal rotation during the lifetime in the excited state. The CT emission originates from the 1(2pσ,3dσ) state having an in-plane long-axis polarization, which is produced by the 2pσ* (aromatic ring) vacant 3dσ (Si-Si bond) intramolecular charge transfer. The CT state plays an important role in the photochemical and photophysical properties of phenyldisilanes. At room temperature a long-lived 425 nm transient (silene) is produced with a time constant of 30 ps from the CT state. The photolysis of cyclotetrasilanes is remarkably dependent on their molecular structures: two molecules of the corresponding disilene are produced from the S1 state of planar cyclotetrasilanes, while silylene is generated by ring contraction in the S1 state of bent cyclotetrasilanes. Remarkably large Stokes shifts are observed in these cyclotetrasilanes. Dimethylsilylene with a transient peak at 470 nm is observed by laser photolysis of cyclohexasilanes. The dynamic behaviours of the intermediates have been studied by nanosecond laser photolysis. The phenylsilyl radical is generated by photolysis of phenylsilanes in rigid glass at 77 K, which gives a structured emission similar to that of benzyl radical.  相似文献   

3.
Dibenzothiophene-5-oxide (DBTO) cleanly produces dibenzothiophene (DBT) on direct photolysis, but with very low quantum yield. A proposed mechanism involves scission of the S-O bond which is coupled to an intersystem crossing step, thus producing the sulfide and O((3)P) via a unimolecular pathway. To test this hypothesis, heavy atom substituted DBTOs were prepared and photolyzed. Iodo-, bromo-, and chloro-substituted DBTOs show higher quantum yields for deoxygenation than does the parent molecule, in the order consistent with an intersystem crossing-related heavy atom effect. 2-Iododibenzothiophene also undergoes photochemical deiodination. Phosphorescence data are consistent with heavy-atom assisted intersystem crossing.  相似文献   

4.
The photochemical reactions of crystal violet leuconitrile (CVCN) were investigated by the means of product analysis and trapping experiments, laser flash and steady-state photolysis, and steady-state fluorescence. The influence of oxygen on the reaction was examined in detail. The photochemistry of malachite green leuconitrile (MGCN), basic fuchsin leuconitrile (BFCN), and crystal violet leucomethyl (CVMe) and leucobenzyl (CVBn), as well as triphenylacetonitrile, was studied. The results suggest ionization occurs from S1, while the di-pi-methane reaction is the photochemical route from T1.  相似文献   

5.
The syntheses and reactions of photoresponsive dendrimers are described. Dendrimers with photoreversible stilbene cores undergo mutual cis–trans isomerization in organic solvents to give photostationary state mixtures of cis- and trans-isomers. Even stilbene dendrimers with molecular weights as high as 6500 underwent mutual cis–trans isomerization within the lifetime of the excited singlet state. The large dendron group surrounding the photoreactive core may affect the excited state properties of the core to induce the efficiency of photoisomerization and/or reduce the fluorescence efficiency. The photochemistry of stilbene dendrimers, with various types of dendron groups, azobenzene dendrimers and other photoresposive dendrimers is discussed.  相似文献   

6.
The phosphorescence and photochemical behavior of the macrocyclic complexes (1,4,7,10,13,16-hexaazacyclooctadecane)chromium(III) (Cr([18]-aneN(6))(3+); 1) and (4,4',4'-ethylidynetris(3-azabutan-1-amine)) chromium(III) (Cr(sen)(3+); 2) have been compared to each other and to the complex Cr(en)(3)(3+). For both macrocyclic complexes, phosphorescence from room temperature aqueous solutions is too weak to be observed, contrasting with Cr(en)(3)(3+), though both had somewhat longer 77 K lifetimes than Cr(en)(3)(3+). Phosphorescence lifetimes for these macrocyclics decreased with increasing temperature much faster than for Cr(en)(3)(3+) and a conventional extrapolation based on a fit of reciprocal lifetimes (corrected for the low-temperature contribution) to the Arrhenius equation gave estimated room temperature phosphorescence lifetimes of a few nanoseconds, consistent with the failure to observe room temperature emission. Fitting of the nonlinearity of the data seen in these plots suggested that two high-temperature processes were occurring with estimated activation parameters (E in kJ mol(-1) and A in s(-1)) for Cr([18]-aneN(6))(3+): E(1) = 40, A(1) = 1 x 10(16); E(2) = 24, A(2) = 1 x 10(14): Cr(sen)(3+); E(1) = 45, A(1) = 2 x 10(15); E(2) = 29, A(2) = 7 x 10(11). Cr([18]-aneN(6))(3+) was photochemically inert on irradiation. On irradiation into the lowest quartet ligand field absorption band, Cr(sen)(3+) photolyzes with a quantum yield of 0.098 +/- 0.001 at room temperature. Laser flash photolysis with conductivity detection showed that this photoreaction occurred faster than protonation of the liberated amine ligand at all practical proton concentrations. The quantum yield for irradiation directly into the doublet absorption band of Cr(sen)(3+) was 0.077 +/- 0.003. Photoaquation of Delta-Cr(sen)(3+) led to loss of optical activity and product analysis by capillary electrophoresis showed that both racemic and Delta-Cr(sen)(3+) photoaquate to a single main product, trans-Cr(sen-NH)(H(2)O)(4+). The product stereochemistry is shown to be consistent with predictions based on the angular overlap model for Cr(III) photochemistry, recognizing the additional constraints imposed by the ligand. The abnormally short room temperature solution lifetime of the doublet state is a result of a radiation-less process that competes with other processes depleting the doublet state. However, this doublet-state deactivation process does not lead to photoaquation but competes with BISC and photoaquation via the quartet state, resulting in an unprecedented reduction in photoaquation quantum yield on direct irradiation into the doublet state.  相似文献   

7.
Extensive ab initio calculations were employed to characterize stable conformers of gaseous arginine, both the canonical and zwitterionic tautomers. Step-by-step geometry optimizations of possible single-bond rotamers at the B3LYP/6-31G(d), B3LYP/6-31++G(d,p), and MP2/6-31++G(d,p) levels yield numerous structures that are more stable than any known ones. The final electronic energies of the conformers were determined at the CCSD/6-31++G(d,p) level. The lowest energies of the canonical and zwitterionic structures are lower than the existing values by 2.0 and 2.3 kcal/mol, respectively. The relative energies, rotational constants, dipole moments, and harmonic frequencies of the stable conformers remain for future experimental verification. The conformational distributions at various temperatures, estimated according to thermodynamic principles, consist almost exclusively of the newly found structures. One striking feature is the occurrence of blue-shifting hydrogen bonds in all six of the most stable conformers. A unique feature of important conformations is the coexistence of dihydrogen and blue- and red-shifting hydrogen bonds. In addition to the hydrogen bonds, the stereoelectronic effects were also found to be important stabilization factors. The calculated and measured proton affinities agree within the theoretical and experimental uncertainties, affirming the high quality of our conformational search. The theoretical gas-phase basicity of 245.9 kcal/mol is also in good agreement with the experimental value of 240.6 kcal/mol. The extensive searches establish firmly that gaseous arginine exists primarily in the canonical and not the zwitterionic form.  相似文献   

8.
9.
We use a novel fluorescence polarization microscope in combination with molecular dynamics calculations to determine the conformation of individual isolated chains of the conjugated polymer MEH-PPV. We found a narrow distribution of defect cylinder conformations in a poor-solvent matrix and two types of defect coil conformations in a good-solvent matrix. The conformations were related to photophysical properties of MEH-PPV by measuring fluorescence intermittency on the same chains. We obtained direct evidence that the photophysics is determined by the chain conformations and that small changes in the polymer microscopic structure can qualitatively affect the photophysical properties.  相似文献   

10.
Disilanes and hexasilanes with terminal hydrogen-bond substituents, i.e., 3,5-dihydroxyphenyl groups, were synthesized. The structures were analyzed by X-ray diffraction and it was shown that the resulting molecular orientations were controlled by the hydrogen-bond network.  相似文献   

11.
Dilute mixtures of n-butanal, 3-methylbutanal, and 3,3-dimethylbutanal in synthetic air, different N(2)/O(2) mixtures, and pure nitrogen (up to 100 ppm) were photolyzed with fluorescent UV lamps (275-380 nm) at 298 K. The main photooxidation products were ethene (n-butanal), propene (3-methylbutanal) or i-butene (3,3-dimethylbutanal), CO, vinylalcohol, and ethanal. The photolysis rates and the absolute quantum yields were found to be dependent on the total pressure of synthetic air but not of nitrogen. At 100 Torr, the total quantum yield Φ(100) = 0.45 ± 0.01 and 0.49 ± 0.07, whereas at 700 Torr, Φ(700) = 0.31 ± 0.01 and 0.36 ± 0.03 for 3-methylbutanal and 3,3-dimethybutanal, respectively. Quantum yield values for n-butanal were reported earlier by Tadi? et al. (J. Photochem. Photobiol. A2001143, 169-179) to be Φ(100) = 0.48 ± 0.02 and Φ(700) = 0.32 ± 0.01. Two decomposition channels were identified: the radical channel RCHO → R + HCO (Norrish type I) and the molecular channel CH(3)CH(CH(3))CH(2)CHO → CH(2)CHCH(3) + CH(2)═CHOH or CH(3)C(CH(3))(2)CH(2)CHO → CHC(CH(3))CH(3) + CH(2)═CHOH, (Norrish type II) having the absolute quantum yields of 0.123 and 0.119 for 3-methybutanal and 0.071 and 0.199 for 3,3-dimethylbutanal at 700 Torr of synthetic air. The product ethenol CH(2)═CHOH tautomerizes to ethanal. We have performed ab initio and density functional quantum (DFT) chemical computations of both type I and type II processes starting from the singlet and triplet excited states. We conclude that the Norrish type I dissociation produces radicals from both singlet and triplet excited states, while Norrish type II dissociation is a two-step process starting from the triplet excited state, but is a concerted process from the singlet state.  相似文献   

12.
13.
The role of an ortho-alkylthioether group in controlling the conformation around the ring-N bonds of meta-connected arylamide oligomers is studied. Density functional theory (DFT) geometries of model compounds, including acetanilide, an ether acetanilide, and a thioether acetanilide, and their corresponding diamides, show that for either monoamide or diamide the alkyl side chain of the thioether should be perpendicular to the aryl plane, whereas for the ether monoamide, the alkyl side chain is in the aryl plane. DFT ring-N torsional potentials and constrained geometries of the model compounds demonstrate that carbonyl-S repulsion leads to a high torsional barrier and that intramolecular N-H...S and C-H...O hydrogen bonds and ring-amide conjugation lead to N-H having a preferred orientation in the benzene plane pointing towards S. The N-H bond lengthens and the ortho-ring C-H bond shortens in a regular pattern in the approach to the preferred orientation. Calculated IR frequencies for the N-H stretch show a clear red shift between model compounds without and with the thioether side chain.  相似文献   

14.
The fluorescence properties of (3)–(6) in solvents of varying polarity have been examined and the conclusion reached that in non-polar solvents they exhibit fluorescence (low quantum yield) from an intramolecular ternary complex. In polar solvents very little fluorescence is observable. Although each compound exhibits extensive intramolecular fluorescence quenching, the quantum yield of localised triplet naphthalene in non-polar solvents remains relatively high indicating that intersystem crossing occurs in the non-relaxed exciplex.  相似文献   

15.
16.
The interfaces formed between pentacene (PEN) and perfluoropentacene (PFP) molecules and Cu(111) were studied using photoelectron spectroscopy, X-ray standing wave (XSW), and scanning tunneling microscopy measurements, in conjunction with theoretical modeling. The average carbon bonding distances for PEN and PFP differ strongly, that is, 2.34 A for PEN versus 2.98 A for PFP. An adsorption-induced nonplanar conformation of PFP is suggested by XSW (F atoms 0.1 A above the carbon plane), which causes an intramolecular dipole of approximately 0.5 D. These observations explain why the hole injection barriers at both molecule/metal interfaces are comparable (1.10 eV for PEN and 1.35 eV for PFP) whereas the molecular ionization energies differ significantly (5.00 eV for PEN and 5.85 eV for PFP). Our results show that the hypothesis of charge injection barrier tuning at organic/metal interfaces by adjusting the ionization energy of molecules is not always readily applicable.  相似文献   

17.
18.
Oxoglaucine (OG) is an oxoaporphine alkaloid, which has been linked to plant defense mechanisms. It contains a phenalenone (PN)-like chromophore, which suggests a role as singlet oxygen ((1)O(2)) photosensitizer. Indeed, OG is able to photosensitize (1)O(2) with 100% efficiency in nonpolar environments, similar to PN. However, this efficiency decreases in polar and protic media, although (1)O(2) is formed in all environments ranging from benzene to water. OG is a rather inefficient (1)O(2) quencher (k(q) = 8 x 10(5) M(-1) s(-1)) unlike the related alkaloids boldine and glaucine, for which an antioxidant role has been suggested. The results of this study contribute to the view that plant defense mediated by PN-like secondary metabolites may have a photochemical component.  相似文献   

19.
20.
Picosecond dynamics of the intramolecular exciplex anthracene-(CH2)3-N,N-diniethylaniline have been measured in acetonitrile. The results indicate two processes. First, very rapid (7 ± 1 ps) electron transfer for molecules in extended conformations, producing solvated ion pairs without passing through the exciplex state. Second, folded conformers yield exciplexes within 2 ps, having a lifetime of 580 ± 30 ps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号