首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 633 毫秒
1.
Pulsed field gradient (PFG) NMR and magic-angle spinning (MAS) NMR have been combined in order to measure the diffusion coefficients of liquid crystals in confined geometry. Combination of MAS NMR with PFG NMR has a higher spectroscopic resolution in comparison with conventional PFG NMR and improves the application of NMR diffusometry to liquid crystals. It is found that the confinement of the liquid crystal 5CB in porous glasses with mean pore diameters of 30 and 200 nm does not notably change its diffusion behavior in comparison with the bulk state.  相似文献   

2.
We discuss the capability of deuteron nuclear magnetic resonance (NMR) spectroscopy and relaxometry to reveal molecular ordering and dynamics in confined liquid crystals. The attention is focused on the high-temperature phase above the nematic-isotropic transition, which is — in the absence of the long-range orientational order — very suitable for the study of surface interactions. Deuteron NMR spectra and relaxation rates are presented for two representatives of confined liquidcrystal systems: 8CB in cylindrical cavities of Anopore membranes and 5CB with an embedded polymer network. A substantial increase in the transverse spin relaxation rate, stimulated by the surface-induced order in enclosures, has been observed. In cylindrical cavities, it exhibits a strong temperature dependence on approaching the phase transition, whereas in the polymer network dispersion it is temperature-independent. The increase of T 2 ?1 provides information on the effect of spatial constraints on molecular mobility and on the surface orientational order parameter. Using deuteron relaxometry, one can measure the degree of orientational order in the isotropic phase not only in cylindrical but also in spherical cavities and enclosures of irregular shape, where the standard approach based on quadrupolar splitting of the NMR spectrum fails.  相似文献   

3.
We present results of the deuteron nuclear magnetic resonance (NMR) and small-angle X-ray scattering (SAXS) study of ordering and phase transition behavior of octylcyanobiphenyl (8CB) liquid crystal confined to a controlled-pore glass (CPG) with nontreated and silanes-treated pore surfaces. The deuteron NMR spectra allowed to determine the degree of nematic liquid crystal ordering and also provided an indirect information on the confined 8CB smectic ordering via its influence on the nematic ordering. For the smectic phase these data are supplemented with measurements of the temperature dependence of the first-order SAXS diffraction pattern. The NMR results indicate that the average nematic and smectic order parameters of 8CB in the nontreated CPG are only weakly perturbed by the confinement. The SAXS data further suggest that in confined 8CB for both nontreated and silane-treated CPG a domainlike pattern appears in accordance with the Imry-Ma theorem.  相似文献   

4.
Using proton NMR relaxometry in the kilohertz frequency range, we study dynamics of 5CB liquid crystal molecules dispersed in the form of spherical microdroplets in a PDLC material. The focus of the study is the spin-lattice relaxation in the rotating frame, T1rho(-1), measured above the nematic-isotropic transition TNI. We show that the relaxation rate T1rho(-1)--when induced by uniform molecular translational diffusion in a spherical cavity--depends on the strength of the rotating magnetic field as T1rho(-1) proportional to omega1(-alpha) where alpha varies between 0.7 and 1, depending on the thickness of the ordered surface layer. This relaxation mechanism governs mainly the transverse spin relaxation, whereas the measurements of the frequency and temperature dependence of T1rho(-1) indicate a strong effect of slowing-down of molecular translational diffusion in contact with the polymer surface and yield the average dwell-time of molecules at the surface of the order 10(-5) s.  相似文献   

5.
The behaviour of methane molecules inside carbon nanotubes at room temperature is studied using classical molecular dynamics simulations. A methane molecule is represented either by a shapeless super-atom or by a rigid set of five interaction centres localized on atoms. Different loadings of methane molecules ranging from the dense gas density to the liquid density, and the influence of flexibility of the CNT on structural and dynamic properties of confined molecules are considered. The simulation results show the decreases of the diffusion coefficient of methane molecules with density. At higher densities diffusion coefficient values are almost independent of molecular shape, but at low densities one observes faster motion of the super-atom molecule than that for the tetrahedral model of the molecule. For loadings of methane considered here the nanotube flexibility, introduced by the reactive empirical bond order (REBO) potential for interactions between carbon atoms of nanotube, does not have an effect on diffusivity of methane molecules, and its impact on the molecular structure is weak. It is found that methane molecules in the vicinity of the nanotube wall show tripod orientation with respect to the nanotube surface.  相似文献   

6.
Proton relaxation rates of nematic liquid crystals confined in nanoporous cavities were measured in a broad frequency range with the help of field cycling nuclear magnetic resonance relaxometry. The shape of relaxation dispersion curves in confined materials strongly deviates from the behavior in bulk, both above and below the bulk isotropization temperature. A strong increase in relaxation rates, exceeding by two orders of magnitude that of the bulk sample, is observed in the range of a few kilohertz. Relaxation rates in bigger pores decreased. Experimental findings are interpreted in terms of surface-induced orientational order and diffusion between sites with different orientations of local directors. With the aid of Monte Carlo simulations, two processes affecting low-frequency relaxation could be identified: (a) exchange losses of molecules from the surface-ordered phase to the bulk-like phase, and (b) Reorientations Mediated by Translational Displacements, which dominate the long-time scale and account for the recovery of correlation in molecular orientations as molecules probe different surface sites. It is shown that the width of the oriented layer may strongly affect the slope of dispersion curves and that cross-over between plateau and power law dispersion regimes shifts towards lower frequencies for bigger pores.  相似文献   

7.
We report a molecular simulation study of freezing transitions for simple fluids in narrow slit pores. A major stumbling block in previous studies of freezing in pores has been the lack of any method for calculating the free energy difference between the confined solid and liquid phases. Conventional thermodynamic integration methods often fail for confined systems, due to the difficulty in choosing a suitable path of integration. We use a different approach that involves calculating the Landau free energy as a function of a suitable order parameter, using the grand canonical Monte Carlo simulation method. The grand free energy for each phase can then be obtained by one-dimensional integration of the Landau free energy over the order parameter. These calculations are carried out for two types of wall—fluid interaction, a hard wall and a strongly attractive wall modelled on carbon. The grand free energy results for both cases clearly indicate a first order fluid to solid transition. In the case of the attractive carbon wall, there are three phases. Phase A corresponds to all layers having a liquid-like structure; phase B corresponds to the contact layers (the layers adjacent to the two pore walls) being frozen and the rest of the layers being fluid-like; phase C corresponds to all the layers being frozen. Our results for the angular structure function in the individual molecular layers show strong evidence of a transition from a two-dimensional liquid phase to a hexatic phase. This is followed by a transition from the hexatic to a crystal phase.  相似文献   

8.
Gels consist of crosslinked polymer network swollen in solvent. The network of flexible long-chain molecules traps the liquid medium they are immersed in. Some gels undergo abrupt volume change, a phase transition process, by swelling-shrinking in response to external stimuli changes in solvent composition, temperature, pH, electric field, etc. We report that during volume phase transition changes of NMR longitudinal relaxation time T(1), NMR transverse relaxation time T(2), and diffusion coefficient D of the PMMA gel, and D of the NIPA gel. We describe how the gels were synthesized and the reason of using the snapshot FLASH imaging sequence to measure T(1), T(2), and D. Since T(1), T(2) and D maps have identical field of view and data are extracted from identical areas from their respective maps, these values can be correlated quantitatively on a pixel-by-pixel basis. Thus a complete set of NMR parameters is measured in-situ: the gels are in their natural state, immersed in the liquid, during the phase transition. The results of spectroscopic method agree with that of snapshot FLASH imaging method. For the PMMA gel T(1), T(2) and D decrease when gels undergo volume phase transition between deuterated acetone concentration of 30% and 40%. At its contracted state, T(1) is reduced to a little less than one order of magnitude, T(2) over two orders of magnitude, and D over one order of magnitude, smaller from values of PMMA gel at the swollen state. At an elevated temperature of 54 degrees C the thermosensitive NIPA gel is at a contracted state, with its D reduced to almost one order of magnitude smaller from that of the swollen NIPA at room temperature.  相似文献   

9.
张龙艳  徐进良  雷俊鹏 《物理学报》2019,68(2):20201-020201
采用非平衡分子动力学方法模拟不同浸润性微通道内液体的传热过程,分析了尺寸效应对固液界面热阻及温度阶跃的影响.研究结果表明,界面热阻随微通道尺寸的变化可分为两个阶段,即小尺寸微通道的单调递增阶段和大尺寸微通道的恒定值阶段.随着微通道尺寸的增加,近壁区液体原子受对侧固体原子的约束程度降低,微通道中央的液体原子自由移动,固液原子振动态密度近似不变,使得尺寸效应的影响忽略不计.上述两种阶段的微通道尺寸过渡阈值受固液作用强度与壁面温度的共同作用:减弱壁面浸润性,过渡阈值向大尺寸区域迁移;相较于低温壁面,高温壁面处的过渡阈值更大.增加微通道尺寸,固液界面温度阶跃呈单调递减趋势,致使壁面温度边界和宏观尺度下逐渐符合.探讨尺寸效应有助于深刻理解固液界面能量输运及传递机制.  相似文献   

10.
We present a deuteron NMR study of molecular thickness films of a nematogenic material in cylindrical pores. Compared to liquid crystal in bulk or completely filling the pores, a reduced quadrupole splitting is found. It strongly depends on thickness, but only weakly on temperature, even crossing the bulk nematic-isotropic transition. This demonstrates the presence of a 2D-like film that eventually coexists with a bulklike phase suggesting a dewetting behavior. Motionally averaged angular patterns with biaxiallike features reveal unexpectedly fast surface molecular diffusion.  相似文献   

11.
The accessibility of molecular self-diffusion coefficients in anisotropic materials, such as liquid crystals or solids, by stimulated-echo-type (2)H PGSE NMR is examined. The amplitude and phase modulation of the signal in the stimulated-echo-type sequence by the static quadrupole coupling during the encoding/decoding delays is suppressed by adjusting the pulse flip angles and the phase cycle. For nuclei that experience both nonnegligible quadrupole and dipole couplings, the application of magic echoes during the evolution periods of stimulated echo is demonstrated as a helpful technique in the case of slow diffusion. These findings are demonstrated by experimental results in the thermotropic liquid crystal of partially deuterated 8CB. The obtained diffusion coefficients are also compared to data obtained by a (1)H homonuclear-decoupling-type PGSE NMR method in the same material.  相似文献   

12.
Phase transition between nematic and isotropic liquid crystal is a very weak first order phase transition.We avoid to use the normal Landau-de Gennes‘s free energy that reduces a strong first order transition,and set up a data base of free energy calculated by means of Tao-Sheng-Lin‘s extended molecular field theory that can explain the experiments of the equilibrium properties of nematic liquid crystal very well.Then we use the free energy method of lattice Boltzmann developed by Oxford group to study the phase decomposition,pattern formation in the flow of the liquid crystal near transition temperature.  相似文献   

13.
We present results from μSR and NMR on norbornene single crystals. The first two techniques provide a measure of the only non-zero rank-2 molecular order parameter in the plastic phase. Its non-vanishing value proves that molecular reorientations are not isotropic, its uniqueness indicates negligible biaxiality and its temperature dependence suggests anisotropic rotational diffusion. Preliminary analysis of single crystal IQNS supports this picture.  相似文献   

14.
A new PGSE NMR experiment, designed to measure molecular diffusion coefficients in systems with nonvanishing static dipolar coupling, is described. The fast static dipolar dephasing of the single-quantum (13)C coherences is removed by multiple-pulse heteronuclear decoupling. The resulting slow dephasing of the (13)C coherences allows for inserting appropriate gradient pulses into the pulse sequence. The presence of the large magnetic field gradient reduces the efficiency of the decoupling sequences which is compensated for by introducing a scheme of sequential slice selection across the sample. The method is demonstrated by (19)F-decoupled (13)C PGSE NMR experiments in a lyotropic nematic and lamellar liquid crystal.  相似文献   

15.
Using deuteron nuclear magnetic resonance to study liquid crystals confined to cylindrical pores, an anchoring transition has been found. The transition exhibits an unexpected sharp dependence of the anchoring strength on cyanobiphenyl liquid crystal molecular length. A structural transition from a parallel axial to a planar radial configuration occurs due to an anchoring transition from planar to weakly homeotropic orientation at the walls. The anchoring strength is at a minimum near the decylcyanobiphenyl (10CB) liquid crystal length. Long chain liquid crystal configurations depend on thermal cycling and on the equilibrium atmosphere leading to a bistable SmA structure. Orientational order wetting in the isotropic phase also depends on molecular length.  相似文献   

16.
This paper reports on a Grand Canonical Monte Carlo study of the freezing and melting of Lennard–Jones Ar/Kr mixtures confined in a slit pore composed of two strongly attractive structureless walls. For all molar compositions and temperatures, the pore, which has a width of 1.44?nm, accommodates two contact layers and one inner layer. Different wall/fluid interactions are considered, corresponding to pore walls that have a larger affinity for either Ar or Kr. The solid/liquid phase diagram of the confined mixture is determined and results compared with data for the bulk mixture. The structure of the confined mixture is studied using 2D order parameters and both positional g(r) and bond orientational G6(r) pair correlation functions. It is found that in the confined solid phase, both the contact and inner layers have a hexagonal crystal structure. It is shown that the freezing temperature of the Ar/Kr confined mixture is higher than the bulk freezing point for all molar compositions. Also, it is found that the freezing temperature becomes larger as the ratio α of the wall/fluid to the fluid/fluid interactions increases, in agreement with previous simulation studies on pure substances confined in nanopores. In the case of pore walls having a stronger affinity for Kr atoms (ε Ar/W<ε Kr/W), it is observed that both the contact and inner layers of the confined mixture undergo, at the same temperature, a transition from the liquid phase to the crystal phase. The freezing of Ar/Kr mixtures confined between the walls having a stronger affinity for Ar (ε Ar/W?>?ε Kr/W) is more complex: for Kr molar concentration lower than 0.35, we observe the presence of an intermediate state between all layers being 2D hexagonal crystals and all the layers being liquid. This intermediate state consists of a crystalline contact layer and a liquid-like inner layer. It is also shown that the qualitative variations of the increase of freezing temperature with the molar composition depend on the affinity of the pore wall for the different components. These results confirm that, in addition to the parameter α the ratio of the wall/fluid interactions for the two species, η=?Ar/W/?Kr/W, is a key variable in determining the freezing and melting behaviour of the confined mixture.  相似文献   

17.
2-dimensional methods based on PGSE NMR may be used to correlate or separate molecular dynamical properties, or to elucidate fluctuations. These may utilize either the gradient (q-vector) domain, in which molecular displacements are measured, or the time domain, in which relaxation is measured, and may be analyzed by combinations of inverse Fourier or Laplace transforms. Existing methodologies are reviewed and new experiments proposed. In particular the use of diffusion-diffusion exchange and correlation analysis is demonstrated using the case of water diffusion in a lamellar phase liquid crystal.  相似文献   

18.
A new robust approach for combining multiple-pulse homonuclear decoupling and PGSE NMR is introduced for accurately measuring molecular diffusion coefficients in systems with nonvanishing static homonuclear dipolar couplings. Homonuclear decoupling suppresses dipolar dephasing during the gradient pulses but its efficiency and scaling factor for the effective gradient vary across the sample because of the large variation of the frequency offset caused by the gradient. The resulting artifacts are reduced by introducing a slice selection scheme. The method is demonstrated by (19)F PGSE NMR experiments in a lyotropic liquid crystal.  相似文献   

19.
The temperature dependences of nuclear magnetization and relaxation rates are reviewed theoretically and experimentally in order to quantify the effects of temperature on NMR signals acquired by common imaging techniques. Using common sequences, the temperature dependences of the equilibrium nuclear magnetization and relaxation times must each be considered to fully understand the effects of temperature on NMR images. The temperature dependence of the equilibrium nuclear magnetization is negative because of Boltzmann's distribution for all substances at all temperatures, but the combined temperature dependences of the equilibrium magnetization and relaxation can be negative, weak or positive depending on the temperature (T), echo time (T(E)), repetition time (T(R)), and the temperature dependences of the relaxation times T(1)(T) and T(2)(T) in a pulse sequence. As a result, the magnitude of the NMR signal from a given substance can decrease, increase or stay somewhat constant with increasing temperature. Nuclear thermal coefficients are defined and predictions for spin echo and other simple sequences are verified experimentally using a number of substances representing various thermal and NMR properties.  相似文献   

20.
Necessary conditions for measuring intracrystalline diffusion in small crystal size systems via field-gradient NMR are discussed. As an illustrative case self-diffusion coefficients of water adsorbed in NaA zeolites (average crystal diameter about 1 μm) have been measured by 1H-NMR stimulated echoes in static magnetic field gradients of up to 180 T/m in the temperature range of 254–344 K. Obtaining intracrystalline diffusion coefficients necessitates a sufficiently high spatial resolution only provided by such large field gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号