首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for the analysis of several macrolide and ionophore antibiotics as well as tiamulin in liquid manure was developed. Reversed-phase liquid chromatography and atmospheric pressure chemical ionisation (APCI) tandem mass spectrometry was used for detection.High-performance liquid chromatographic (HPLC) separation of the antibiotics was achieved in 35 min. The analytes were extracted with ethyl acetate and the extracts were cleaned up by solid-phase extraction on a diol SPE cartridge. Recovery experiments with spiked liquid manure concentrations varying from 6 to 2,000 microg kg(-1) gave constant recovery rates. The recovery rates for the macrolides erythromycin, roxithromycin and oleandomycin were 75-94%, that for the ionophore salinomycin was 119%, while that for the pleuromutilin tiamulin was 123%, when using a macrolide internal standard. The relative standard deviation was found to be 15-36% and the limits of detection were 0.4-11.0 micro g kg(-1).The maximum concentrations found in manure samples were 43 micro g kg(-1) for tiamulin and 11 micro g kg(-1) for salinomycin.  相似文献   

2.
Ionic liquids and derivatives—mainly polymeric ionic liquids and magnetic ionic liquids—have been extensively used in microscale extraction over the past few years. Current trends in analytical sample preparation gear toward linking microextraction approaches with high‐throughput sample processing to comply with green analytical chemistry requirements. A variety of high sample throughput strategies that are coupled to both ionic‐liquid‐based solid‐phase microextraction and ionic liquid‐based liquid‐phase microextraction are herein reported. The review is focused on microscale extraction methods that use (i) custom‐made and dedicated extraction devices, (ii) parallel extraction, (iii) magnetic‐based separation, and (iv) miniaturized systems employing semi‐automatic or fully automatic flow injection methods, related micro/millifluidic devices, and robotic equipment.  相似文献   

3.
Coacervates made of surfactant aggregates, namely aqueous and reverse micelles and vesicles, were firstly used as solvents in single-drop microextraction (SDME) and proposed for the extraction and concentration of chlorophenols prior to liquid chromatography. The formation of coacervate drops in the needle tip of conventional microsyringes depended on the type of intermolecular forces established between the surfactant headgroups making up the supramolecular aggregates; hydrogen bond interactions were strong enough to permit the formation of spherical drops. Stability of 1-50 microL coacervate drops was achieved by introducing the microsyringe needle tip in a PTFE rod, the end of which had been machined out with a heated flanging-tool to get circular flanges (diameters in the range 3.5-6 mm). The parameters affecting the efficiency of single-drop coacervative microextraction (SDCME) were investigated using vesicular coacervates as a solvent and 2-chlorophenol (CP), 2,4-dichlorophenol (DCP), 2,4,6-trichlorophenol (TCP) and pentachlorophenol (PCP) as model analytes. Coacervative microextraction dynamics fit to the general rate equation of liquid-liquid extraction. The effect of variables such as extraction time, drop volume, stirring rate, pH and temperature, on the extraction of chlorophenols was similar to that described for organic solvent drops. Electrolyte concentrations above 0.1 M caused drop instability. Under the optimum conditions, detection limits were in the range 0.1-0.3 microg L(-1). The relative standard deviation was between 4.3 and 5.6 at 20 microg L(-1) spiked level. The method was applied to the determination of the four chlorophenols in wastewater, superficial water from a reservoir and groundwater and the recoveries were in the range 79 and 106% at 5-20 microg L(-1) spiked level.  相似文献   

4.
A specific, accurate, precise and reproducible high-performance liquid chromatography (HPLC) method was developed for the estimation of ragaglitazar [(-) DRF 2725, NNC 61-0029], a novel anti-diabetic agent, in rat plasma. The assay procedure involved simple liquid/liquid extraction of ragaglitazar and internal standard (IS, troglitazone) from plasma into ethyl acetate. The organic layer was separated and evaporated under a gentle stream of nitrogen at 40 degrees C. The residue was reconstituted in the mobile phase and injected onto a Kromasil KR 100 - 5C(18) column (4.6 x 250 mm, 5 micro m). Mobile phase consisting of 0.01 M potassium dihydorgen ortho phosphate (pH 3.2) and acetonitrile (30:70, v/v) was used at a flow rate of 1.0 mL/min. The eluate was monitored using an UV detector set at 240 nm. Ratio of peak area of analyte to IS was used for quantification of plasma samples. Nominal retention times of IS and ragaglitazar were 6.9 and 12.2 min, respectively. The standard curve for ragaglitazar was linear (r(2) > 0.999) in the concentration range 0.2-100 micro g/mL. Absolute recovery was >87% from rat plasma for both analyte and IS. The lower limit of quantification (LLOQ) of ragaglitazar was 0.2 micro g/mL. The inter- and intra-day precision in the measurement of quality control (QC) samples, 0.2, 1.0, 5.0 and 50 micro g/mL, were in the range 1.32-3.70% relative standard deviation (RSD) and 1.19-9.39% RSD, respectively. Accuracy in the measurement of QC samples was in the range 94.28-107.45%. Analyte and IS were stable in the battery of stability studies, viz. benchtop, autosampler and freeze/thaw cycles. Stability of ragaglitazar was established for 1 month at -20 degrees C. The application of the assay to a pharmacokinetic study in rats is described.  相似文献   

5.
A fluid of hard spherocylinders of length-to-breadth ratio L/D=5 confined between two identical planar, parallel walls--forming a pore of slit geometry--has been studied using a version of the Onsager density-functional theory. The walls impose an exclusion boundary condition over the particle's centers of mass, while at the same time favoring a particular anchoring at the walls, either parallel or perpendicular to the substrate. We observe the occurrence of a capillary transition, i.e., a phase transition associated with the formation of a nematic film inside the pore at a chemical potential different from micro(b)-the chemical potential at the bulk isotropic-nematic transition. This transition terminates at an Ising-type surface critical point. In line with previous studies based on the macroscopic Kelvin equation and the mesoscopic Landau-de Gennes approach, our microscopic model indicates that the capillary transition is greatly affected by the wetting and anchoring properties of the semi-infinite system, i.e., when the fluid is in contact with a single wall or, equivalently, the walls are at a very large distance. Specifically, in a situation where the walls are preferentially wetted by the nematic phase in the semi-infinite system, one has the standard scenario with the capillary transition taking place at chemical potentials less than micro(b) (capillary nematization transition or capillary ordering transition). By contrast, if the walls tend to orientationally disorder the fluid, the capillary transition may occur at chemical potentials larger than micro(b), in what may be called a capillary isotropization transition or capillary disordering transition. Moreover, the anchoring transition that occurs in the semi-infinite system may affect very decisively the confinement properties of the liquid crystal and the capillary transitions may become considerably more complicated.  相似文献   

6.
This paper gives an overview of the application of micro reactors for fluorination and chlorination of organic compounds supplemented by reporting about first investigations by the authors on the topic of bromination reactions in a micro reactor system. After a brief introduction illuminating the status of micro-chemical processing in general and covering the basic advantages of microstructured reactors, the different micro reactors used so far for halogenation reactions will be described with respect to fabrication, range of operation and performance. Thereafter, investigated reaction systems will be described and discussed.All the reactions have in common that halogenation is achieved by using elemental halogens. Beside one gas phase chlorination, the described fluorinations and chlorinations are gas/liquid processes investigated in specialised gas/liquid micro reactors. In contrast, bromination reactions were performed in a micro mixer/tube set-up not specially adopted e.g. to gas/liquid conditions. Phase conditions here are quite complex through evaporated bromine and gaseous hydrogen bromide formed during the reaction.The range of reactions comprises aromatic electrophilic substitutions and free radical substitutions of alkanes and in the side chain of aromatic compounds. The experimental results underpin the benefits of micro reactors for halogenation reactions as improved process control, process safety, improved selectivity and yields, shortening of syntheses and higher space-time yields. Furthermore, another aspect is the potential for an accelerated process development.  相似文献   

7.
This paper reports the design of surfaces on which thermotropic liquid crystals can be used to image affinity microcontact printed proteins. The surfaces comprise gold films deposited onto silica substrates at an oblique angle of incidence and then functionalized with a monolayer formed from 2-mercaptoethylamine. Ellipsometric measurements confirm the transfer of anti-biotin IgG to these surfaces from affinity stamps functionalized with biotinylated bovine serum albumin (BSA), while control experiments performed using anti-goat IgG confirmed the specificity of the IgG capture on the stamp. On these surfaces, anti-biotin IgG caused nematic phases of 4-cyano-4'-pentylbiphenyl (5CB, Delta epsilon = epsilon(parallel) - epsilon(perpendicular) > 0) to assume orientations that were parallel to the surfaces (planar anchoring) but with azimuthal orientations that were distinct from those assumed by the liquid crystals on the amine-terminated surfaces not supporting IgGs. Following incubation of these samples for >8 h at 36 degrees C, we observed that the amine-terminated regions of the surface not supporting IgG cause 5CB to undergo a transition from planar to perpendicular (homeotropic). Because N-(4-methoxybenzylidene)-4-butylaniline (MBBA) (Delta epsilon < 0) does not undergo a similar transition in orientation, this transition is consistent with the effects of an electrical double layer formed at the amine-terminated surface on the liquid crystal. Following the transition to homeotropic anchoring, the liquid crystals provide high optical contrast between regions of the surface supporting and not supporting IgG. We conclude that amine-terminated surfaces (I) uniformly align liquid crystals when not supporting proteins and (II) have sufficiently high surface free energy to capture proteins delivered to the surface from an affinity stamp, and thus they form the basis of a useful class of surfaces on which affinity microcontact printed proteins can be imaged using liquid crystals.  相似文献   

8.
A reverse-phase high-performance liquid chromatographic (HPLC) method to determine hydrocortisone acetate, hydrocortisone hemisuccinate and lidocaine is described in this paper. The separation was made in a LichrCART C(18) column using a methanol-NaH(2)PO(4)/Na(2)HPO(4) (0.1 mol L(-1)) (pH=4.5) buffer solution as a mobile phase in isocratic mode (60:40 (v/v)). The mobile phase flow rate and the sample volume injected were 1 mL min(-1) and 20 micro L, respectively. The detection was made with a diode-array detector measuring at the maximum for each compound. Quantification limits ranging from 0.18 to 0.84 micro g L(-1) were obtained when the peak area was measured. The method was applied in pharmaceutical formulations that were compared with those obtained by through multivariate regression spectrophotometry and micellar capillary electrophoresis (MEKC). HPLC results are in accordance with the results obtained by MEKC. The spectrophotometric method was suitable only for synthetic samples.  相似文献   

9.
Peng XY 《Lab on a chip》2011,11(1):132-138
A non-membrane micro surface tension pump (MISPU) was fabricated on a glass microchip by one-step glass etching. It needs no material other than glass and is driven by digital gas pressure. The MISPU can be seen working like a piston pump inside the glass microchip under a microscope. The design of the valves (MISVA) and pistons (MISTON) was based on the surface tension theory of the micro surface tension alveolus (MISTA). The digital gas pressure controls the moving gas-liquid interface to open or close the input and output MISVAs to refill or drive the MISTON for pumping a liquid. Without any moving parts, a MISPU is a kind of long-lasting micro pump for micro chips that does not lose its water pumping efficiency over a 20-day period. The volumetric pump output varied from 0 to 10 nl s(-1) when the pump cycle time decreased from 5 min to 15 s. The pump head pressure was 1 kPa.  相似文献   

10.
A micro fluorescent analysis system is proposed using silicon micromachining. GaN blue light-emitting diode (LED) monolithically integrated on a silicon substrate is used as a light source for the fluorescent analysis system. The blue light suits the excitation of several dyes used commonly in fluorescent analysis. Silicon photodiode (Si-PD) that matches the visible and near infrared fluorescent wavelengths of dyes is integrated on a silicon substrate. Polydimethylsiloxane (PDMS) micro-channels are also stacked for flowing dye-sensitized liquid. Therefore, the proposed system is an integrated system that can be composed on a silicon platform, i.e. a bottom layer of Si-PD, a middle layer of GaN-LED on silicon substrate and a top layer of micro PDMS channel. An aperture is opened into the GaN-LED layer by deep reactive ion etching to create a ring-shaped GaN-LED and a through-hole for detection. The light from the ring-shaped GaN-LED in the middle layer excites the dye-sensitized liquid in the top micro-channel layer. The fluorescence emitted from dye is detected by the Si-PD on the bottom layer at an angle larger than 90 degrees from the direction of excitation. Therefore, the detection optics consist basically of a dark-field illumination optical system. In order to evaluate the performance of the integrated system, fluorescence of fluorescein isothiocyanate (FITC) solution flowing in the micro channel is measured. From the measurement, the noise, sensitivity and limit of detection in the fabricated system are evaluated for FITC dye to be 0.57 pA, 1.21 pA μM(-1) and 469 nM, respectively. From these results, a compact fluorescence analysis system is demonstrated.  相似文献   

11.
A high-performance liquid chromatography (HPLC) method with mass spectrometric detection is described for determination of arecoline in newborn meconium, urine and cord serum, using pilocarpine as internal standard. The analytes were extracted from neonatal biological matrices with chloroform/isopropanol (95:5, v/v) at alkaline pH. Extracts were analyzed by HPLC coupled to an electrospray (ESI) interface and a quadrupole mass spectrometer. Chromatography was performed on a C(8) reversed-phase column using 10 mM ammonium acetate (pH 4.3)/acetonitrile (90:10, v/v) as mobile phase. The mass spectrometer was operated in selected ion monitoring mode. The method was validated over the concentration range 0.005-1.00 micro g/g meconium, 0.004-1.00 micro g/mL cord serum and 0.001-1.00 micro /mL urine. Mean recoveries ranged between 86.5 and 90.7% for arecoline in the different biological matrices, with precision always better than 10%. The quantification limits of arecoline were 0.005 micro g/g meconium, 0.004 micro g/mL cord serum, and 0.001 micro g/mL urine. The method was applied to the analysis of neonatal biological matrices to assess eventual fetal exposition to arecoline. Two newborns from Asian mothers who declared areca nut consumption presented arecoline in meconium with concentrations in the range 0.006-0.008 micro g/g; also the urine from one neonate tested positive for the drug.  相似文献   

12.
吴晓松  何平笙 《化学通报》2002,65(5):333-337
微液滴的非机械驱动是操纵微小尺雨液体流动的新方法。本文介绍当前有关微液滴非机械驱动的研究进展,包括:利用电化学方法产生并消耗表面活性分子来产生表面张力梯度;把表面浸润性梯度和温度梯度相结合;通过光敏化合物偶氮部分顺反异构的转换导致表面自由能的变化,最后由光照来驱动微液滴,以及利用固体基片上的亲水疏水条纹构建微芯片上实验室的液体非机械输送网络。  相似文献   

13.
The translational diffusion constant, D, of a polymer solute in a single-domain, nematic liquid crystal solvent (5CB) is measured in directions parallel and perpendicular to the nematic director using a fluorescence two-beam, cross-correlation technique. The solute under investigation is the stiff, conjugated polymer, MEH-PPV. The ratio D parallel/D perpendicular) of diffusion constants (parallel and perpendicular to the director) is observed to be 1.9 +/- 0.3. This is surprisingly small considering that MEH-PPV is known to be both elongated and highly aligned along the liquid crystal director of 5CB. We therefore argue that the structural order parameter of the solvent governs the anisotropy of the diffusion of the solute.  相似文献   

14.
A specific, accurate, precise and reproducible high-performance liquid chromatography (HPLC) method was developed for the estimation of DRF-4367, a novel cyclooxygenase-2 inhibitor in rat plasma. The assay procedure involved simple liquid/liquid extraction of DRF-4367 and internal standard (IS, celecoxib) from plasma into dichloromethane. The organic layer was separated and evaporated under a gentle stream of nitrogen at 40 degrees C. The residue was reconstituted in the mobile phase and injected onto a Kromasil KR 100-5C(18) column (4.6 x 250 mm, 5 microm). The mobile phase consisting of 0.01 M potassium dihydrogen ortho-phosphate (pH 3.2) and acetonitrile (40:60, v/v) was used at a flow rate of 1.0 mL/min. The eluate was monitored using an UV detector set at 247 nm. The ratio of peak area of analyte to IS was used for quantification of plasma samples. Nominal retention times of DRF-4367 and IS were 6.6 and 11.2 min, respectively. The standard curve for DRF-4367 was linear (r(2) > 0.999) in the concentration range 0.1-20 micro g/mL. Absolute recovery was >86% from rat plasma for both analyte and IS. The lower limit of quantification of DRF-4367 was 0.1 micro g/mL. The inter- and intra-day precisions in the measurement of quality control samples, 0.1, 0.3, 8.0 and 15.0 microg/mL, were in the range 6.93-9.34% relative standard deviation (RSD) and 0.48-6.59% RSD, respectively. Accuracy in the measurement of QC samples was in the range 91.24-109.36% of the nominal values. Analyte and IS were stable in the battery of stability studies, viz. benchtop, autosampler and freeze-thaw cycles. Stability of DRF-4367 was established for 1 month at -80 degrees C. The application of the assay to a pharmacokinetic study in rats is described.  相似文献   

15.
Kahalalide F (KF) is a novel cyclic depsipeptide anticancer drug, which has shown anticancer activity both in vitro and in vivo especially against human prostate cancer cell lines. To characterize the pharmacokinetics of KF during a phase I clinical trial in patients with androgen refractory prostate cancer, a method was developed and validated for the quantitative analysis of KF in human plasma using high-performance liquid chromatography (HPLC) coupled to positive electrospray ionization tandem mass spectrometry (ESI-MS/MS). Microbore reversed-phase liquid chromatography (LC) performed with mobile phases containing trifluoroacetic acid, an additive commonly used for separating peptides, resulted in substantial suppression of the signal for KF on ESI-MS/MS. An alternative approach employing a basic mobile phase provided an excellent response for KF when detected in the positive ion mode. Plasma samples were prepared for LC MS/MS by solid-phase extraction on C(18) cartridges. The LC separation was performed on a Zorbax Extend C(18) column (150 x 2.1 mm i.d., particle size 5 micro m) with acetonitrile -10 mM aqueous ammonia (85 : 15, v/v) as the mobile phase, at a flow-rate of 0.20 ml min(-1). A butyric acid analogue of KF was used as the internal standard. The lower limit of quantitation (LLQ) using a 500 micro l sample volume was 1 ng ml(-1) and the linear dynamic range extended to 1000 ng ml(-1). The inter-assay accuracy of the assay was -15.1% at the LLQ and between -2.68 and -9.05% for quality control solutions ranging in concentration from 2.24 to 715 ng ml(-1). The inter-assay precision was 9.91% or better at these concentrations. The analyte was stable in plasma under all relevant conditions evaluated and for a period of 16 h after reconstituting plasma extracts for LC analysis at ambient temperature.  相似文献   

16.
Akiyama R  Takagai Y  Igarashi S 《The Analyst》2004,129(5):396-397
The proposed method was successful in the determination and separation of lower sub ppt levels of polycyclic aromatic hydrocarbons (PAHs). In this study, a new phase separation phenomenon (i.e., homogeneous liquid-liquid extraction) was developed that rapidly and simply separated an immiscible liquid phase from water-miscible organic solvents. One liter of sample solution was preconcentrated by a solid phase extraction method, then the obtained eluate (5 mL) was further preconcentrated to just 20 microL by this homogeneous liquid-liquid extraction. The 20 [micro sign]L sedimented phase was directly injected into the high-performance liquid chromatography with fluorescence detection (FL-HPLC). The entire preconcentration factor was 50,000-fold. Six kinds of PAHs were determined in the range of 3.0 x 10(-18) approximately 4.5 x 10(-11) mol L(-1). These chemicals were also satisfactorily separated.  相似文献   

17.
Meng DD  Kim CJ 《Lab on a chip》2008,8(6):958-968
We introduce a new mechanism to pump liquid in microchannels based on the directional growth and displacement of gas bubbles in conjunction with the non-directional and selective removal of the bubbles. A majority of the existing bubble-driven micropumps employs boiling despite the unfavorable scaling of energy consumption for miniaturization because the vapor bubbles can be easily removed by condensation. Other gas generation methods are rarely suitable for micropumping applications because it is difficult to remove the gas bubbles promptly from a pump loop. In order to eradicate this limitation, the rapid removal of insoluble gas bubbles without liquid leakage is achieved with hydrophobic nanopores, allowing the use of virtually any kind of bubbles. In this paper, electrolysis and gas injection are demonstrated as two distinctively different gas sources. The proposed mechanism is first proved by circulating water in a looped microchannel. Using H(2) and O(2) gas bubbles continuously generated by electrolysis, a prototype device with a looped channel shows a volumetric flow rate of 4.5-13.5 nL s(-1) with a direct current (DC) power input of 2-85 mW. A similar device with an open-ended microchannel gives a maximum flow rate of approximately 65 nL s(-1) and a maximum pressure head of approximately 195 Pa with 14 mW input. The electrolytic-bubble-driven micropump operates with a 10-100 times higher power efficiency than its thermal-bubble-driven counterparts and exhibits better controllability. The pumping mechanism is then implemented by injecting nitrogen gas bubbles to demonstrate the flexibility of bubble sources, which would allow one to choose them for specific needs (e.g., energy efficiency, thermal sensitivity, biocompatibility, and adjustable flow rate), making the proposed mechanism attractive for many applications including micro total analysis systems (microTAS) and micro fuel cells.  相似文献   

18.
Gas chromatography/mass spectrometry (GC/MS) with negative ion chemical ionization (NICI) detection was utilized for quantitative determination of nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in diesel particulate-related standard reference materials (SRMs). Prior to GC/MS analysis, isolation of the nitro-PAHs from the complex diesel particulate extract was accomplished using solid phase extraction (SPE) and normal-phase liquid chromatographic (LC) fractionation using an amino/cyano stationary phase. Concentrations of eight to ten mononitro-PAHs and three dinitropyrenes were determined in three diesel particulate-related SRMs: SRM 1650a Diesel Particulate Matter, SRM 1975 Diesel Particulate Extract, and SRM 2975 Diesel Particulate Matter (Industrial Forklift). The results from GC/MS NICI using two different columns (5% phenyl methylpolysiloxane and 50% phenyl methylpolysiloxane) were compared to each other and to results from two other laboratories for selected nitro-PAHs. 1-Nitropyrene was the most abundant nitro-PAHs in each of the diesel particulate SRMs (19.8+/-1.1 micro g g(-1) particle in SRM 1650a and 33.1+/-0.6 micro g g(-1) particle in SRM 2975). Three dinitropyrene isomers were measured in SRM 1975 at 0.5-1.4 micro g g(-1) extract and in SRM 2975 at 1-3 micro g g(-1) particle.  相似文献   

19.
Sample preparation is essential for isolating desired components from complex matrices and greatly influences their reliable and accurate analysis. Microextraction techniques such as solid phase micro extraction and liquid–liquid–liquid micro extraction based on hollow fiber and also single drop micro extraction methods are new and effective sample preparation techniques. Crown ethers are heterocyclic chemical compounds that consist of a ring containing several ether groups. Recently crown ethers have been applied in these methods and increase efficiency and selectivity of these techniques. Here we review the application of crown ethers in various micro extraction techniques.  相似文献   

20.
The structure of thin films of 1- and 2-butylimidazoles adsorbed on copper and steel surfaces under air was examined using sum frequency generation (SFG) vibrational spectroscopy in the ppp and ssp polarizations. Additionally, the SFG spectra of both isomers were recorded at 55 °C at the liquid imidazole/air interface for reference. Complementary bulk infrared, reflection-absorption infrared spectroscopy (RAIRS), and Raman spectra of both imidazoles were recorded for assignment purposes. The SFG spectra in the C-H stretching region at the liquid/air interface are dominated by resonances from the methyl end group of the butyl side chain of the imidazoles, indicating that they are aligned parallel or closely parallel to the surface normal. These are also the most prominent features in the SFG spectra on copper and steel. In addition, both the ppp and ssp spectra on copper show resonances from the C-H stretching modes of the imidazole ring for both isomers. The ring C-H resonances are completely absent from the spectra on steel and at the liquid/air interface. The relative intensities of the SFG spectra can be interpreted as showing that, on copper, under air, both butylimidazoles are adsorbed with their butyl side chains perpendicular to the interface and with the ring significantly inclined away from the surface plane and toward the surface normal. The SFG spectra of both imidazoles on steel indicate an orientation where the imidazole rings are parallel or nearly parallel to the surface. The weak C-H resonances from the ring at the liquid/air interface suggest that the tilt angle of the ring from the surface normal at this interface is significantly greater than it is on copper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号