首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
对1,3-二氮杂薁类衍生物采用密度泛函理论(DFT)在B3LYP/6-31G(d)的水平上进行了几何构型的全优化, 在此基础上探讨了分子结构和前线分子轨道能量等性质的变化规律, 采用含时密度泛函理论(TD-DFT)计算了分子的电子跃迁性质, 采用二维平面图和三维立体图来直观表示激发态的性质, 研究分子内电子转移特性. 跃迁密度矩阵的二维等高线图反映了电子-空穴相干性, 三维跃迁密度图反映了跃迁偶极矩的方向和强度, 三维电荷差异密度图说明了激发过程中分子内电子转移性质.  相似文献   

2.
10-Methoxy-2-phenylbenzo[h]quinoline (MPBQ) has been synthesized and characterized by NMR and X-ray single crystal diffraction. Both the ground and the lowest singlet excited-state geometries of MPBQ were optimized by B3LYP and ab initio CIS methods at 6-31G (d,p) level, respectively. The absorption and emission spectra of the compound were experimentally determined in CH(3)CN solution and were simultaneously computed using density functional theory (DFT) and time-dependent density functional theory (TDDFT) in CH(3)CN solution. The calculated absorption and emission wavelengths were in good agreement with the experimental ones. The calculated lowest-lying absorption spectra can be mainly attributed to intramolecular charge transfer (ICT). And the calculated fluorescence spectra can be mainly described as originating from an excited state with intramolecular charge transfer (ICT) character. These results show that MPBQ exhibited excellent thermal stability and could serve as a useful photoluminescence material.  相似文献   

3.
Geometry optimization for a series of ten, two-ring diimine Ru(II) complexes was effected using the Gaussian 98 protocol at density functional theory (DFT) B3LYP level with basis sets 3-21G*and 3-21G**. HOMO-LUMO energy difference values compared favorably to the experimental data from electrochemistry [Delta E(1/2) = (E(1/2ox) - E(1/2red))] and the lowest energy absorption maxima, which for these complexes correspond to the metal-to-ligand charge transfer (MLCT) band. The HOMO and LUMO distributions from DFT support the idea that the lowest energy transitions are metal-to-ligand charge transfer and that the lowest energy LUMO for the mixed ligand complexes is located on 2,2'-bipyrazine (bpz), followed by 2,2'-bipyrimidine (bpm) and then 2,2'-bipyridine (bpy).  相似文献   

4.
李明  申伟  唐典勇 《化学学报》2003,61(8):1251-1255
用量子化学密度泛函理论(DFT)和G3B3方法,对为(~1D)与CF_2HCl的反应 进行了研究,在B3LYP/6-311+G(d),B3LYP/6-311+G(2df,2pd)和G3B3计算水平上, 优化了反应热能面上各驻点的几何结构,通过内禀反应坐标(IRC)计算和振动分 析,对反应过渡态进行了确认,并确定了反应机理。  相似文献   

5.
氰乙基对几种芳胺结构和光谱的影响   总被引:1,自引:0,他引:1  
采用量子化学中密度泛函理论(DFT)的B3LYP方法分别用6-31G*和6-311+G*基组对苯胺、对氯苯胺和对甲苯胺及其氰乙基衍生物的几何构型进行全优化, 探讨了氨基上氰乙基的引入对分子电荷转移、前线轨道能量和电子光谱等性质的影响规律. 在此基础上采用含时密度泛函方法(TD-DFT)计算了分子第一激发态的电子跃迁能, 得到最大吸收波长λmax. 计算结果表明, 氨基上氰乙基的引入, 对前线分子轨道组成影响虽然小, 但使得最大吸收波长红移, 与实验值λmax有较好的一致性, 发现该类物质主要吸收光谱源于分子内的π→π*的电子跃迁.  相似文献   

6.
The hydrogen-bonded dimers of formic acid derivatives XCOOH (X = H, F, Cl, and CH3) have been investigated using density functional theory (B3LYP) and second-order M?ller-Plesset perturbation (MP2) methods, with the geometry optimization carried out using 6-311++G(2d,2p) basis set. The dimerization energies calculated using aug-cc-pVXZ (with X = D and T) basis have been extrapolated to infinite basis set limit using the standard methodology. The results indicate that the fluorine-substituted formic acid dimer is the most stable one in comparison to the others. Topological analysis carried out using Bader's atoms in molecules (AIM) theory shows good correlation of the values of electron density and its Laplacian at the bond critical points (BCP) with the hydrogen bond length in the dimers. Natural bond orbital (NBO) analysis carried out to study the charge transfer from the proton acceptor to the antibonding orbital of the X-H bond in the complexes reveals that most of the dimers are associated with conventional H-bonding except a few, where improper blue-shifting hydrogen bonds are found to be present.  相似文献   

7.
应用密度泛函理论,在B3LYP/6-31G**和B3LYP/6-311G**水平上优化得到了线型簇合物PC2nP(n=1-10)的基态平衡几何构型,计算了它们的谐振动频率.在基态平衡构型下,利用含时密度泛函理论,计算得到了簇合物PC2nP(n=1-10)的垂直激发能和相应的振子强度,导出了激发能与体系大小n的解析关系式.  相似文献   

8.
As an excellent artificial photosynthetic reaction center, the carotene (C)‐porphyrin (P)‐fullerene (F) triad was extensively investigated experimentally. To reveal the mechanism of the intramolecular charge transfer (ICT) on the mimic of photosynthetic solar energy conversion (such as singlet energy transfer between pigments, and photoinduced electron transfer from excited singlet states to give long‐lived charge‐separated states), the ICT mechanisms of C‐P‐F triad on the exciton were theoretically studied with quantum chemical methods as well as the 2D and 3D real space analysis approaches. The results of quantum chemical methods reveal that the excited states are the ICT states, since the densities of HOMO are localized in the carotene or porphyrin unit, and the densities of LUMO are localized in the fullerene unit. Furthermore, the excited states should be the intramolecular superexchange charge transfer (ISCT) states for the orbital transition from the HOMO whose densities are localized in the carotene to the LUMO whose densities are localized in the fullerene unit. The 3D charge difference densities can clearly show that some excited states are ISCT excited states, since the electron and hole are resident in the fullerene and carotene units, respectively. From the results of the electron‐hole coherence of the 2D transition density matrix, not only 3D results are supported, but also the delocalization size on the exciton can be observed. These phenomena were further interpreted with non‐linear optical effect. The large changes of the linear and non‐linear polarizabilities on the exciton result in the charge separate states, and if their changes are large enough, the ICT mechanism can become the ISCT on the exciton.  相似文献   

9.
1 INTRODUCTION Ethers are a kind of organic compounds that are easily oxidized under the conditions of lacking light and any additional excitement. According to dif- ferent mechanisms, the oxidation reactions could be classified into two types: photooxidation reaction and dark oxidation reaction. The former is the reaction with excited state oxygen molecule (singlet state), while the latter is the reaction with ground state oxygen molecule (triple state) without illuminance or any exciter…  相似文献   

10.
Optical physical properties of neutral and charged quinquethiophene monomer, and neutral and cationic pi-dimeric quinquethiophenes were investigated with density functional theory as well as the two dimensional (2D) site (transition density matrix) and three dimensional (3D) cube (transition density and charge difference density) representations, stimulated by the recent experimental report [T. Sakai et al., J. Am. Chem. Soc. 127, 8082 (2005)]. Transition density shows the orientation and strength of the transition dipole moment of neutral and charged quinquethiophene monomer, and charge difference density reveals the orientation and result of the charge transfer in neutral and charged quinquethiophene monomer. To study if coupling exciton and oscillation of electron-hole pair exist in neutral and cationic pi-dimeric quinquethiophenes, the coupling constants J (coupling exciton of electron-hole pair) and K (coupling oscillation of electron-hole pair) were introduced to the exciton coordinate and momentum operators, respectively, and the 2D and 3D analysis methods were further developed by extending our previous theoretical methods [M. T. Sun, J. Chem. Phys. 124, 054903 (2006)]. With the new developed 2D and 3D analysis methods, we investigated the excited state properties of neutral and cationic pi-dimeric quinquethiophenes, especially on the coupling exciton and oscillation of electron-hole pair between monomers. The 2D results show that there is neither coupling exciton (J=0) nor oscillation (K=0) of electron-hole pair in neutral pi-dimeric quinquethiophenes. For some excited states of cationic pi-dimeric quinquethiophenes, there is no coupling exciton (J=0), but there is coupling oscillation (K not equal0); while for some excited states, there are both coupling exciton and coupling oscillator simultaneously (J not equal0 and K not equal0). The strength of transition dipole moments of pi-dimeric quinquethiophenes were interpreted with 3D transition density, which reveals the orientations of their two subtransition dipole moments. The 3D charge transition density reveals the orientation and result of intermonomer and/or intramonomer charge transfer. The calculated results reveal that excited state properties of neutral pi-dimeric quinquethiophene are significantly different from those of the cationic pi-dimeric quinquethiophenes.  相似文献   

11.
使用量子化学中的Hartree-Fock方法和密度泛函理论中的B3LYP方法,分别在3-21G^*和6-31G(d)水平上,计算了尿酸分子从三羰基异构体向三羟基异构体的转化。结果表明,转化过程经历了单羟基和双羟基异构体2种中间物和3种过渡态时的分子内质子转移(IPT),转移中的H原邻近的N,O和C原子形成了具有四元环结构的过渡态。随着IPT的进行,N-H键逐渐被削弱和断裂,O-H键则逐渐生成。3个反应的活化能分别为190.3kJ/mol,181.4kJ/mol和249.9kJ/mol(B3LYP/6-31G(d))。较高的活化能表明在室温下,无催化剂的IPT难以进行。  相似文献   

12.
The solvatochromic behavior of two newly synthesized naphthalimide derivatives (I and II) which have potential antioxidative activities in anticarcinogenic drug development treatment, has been monitored in protic and aprotic solvents of different polarity applying steady-state and time-resolved fluorescence techniques. The compounds exhibit unique photophysical response in different solvent environments. The spectral trends do not appear to originate only from changes in the solvent polarity but also indicate that hydrogen bonding interactions and intramolecular charge transfer (ICT) influence the energy of electronic excitation of the compounds. Incorporation of an amino group at C(4) position of the naphthalimide ring in II makes it behave differently from I in terms of spectral characterization and fluorescence efficacy of the systems. The nonradiative relaxation process of the compounds is governed by medium polarity. The ground state geometry, lowest energy transition, and the UV-vis absorption energy of the compounds were studied using density functional theory (DFT) and time-dependent density functional theory (TDDFT) at the B3LYP/6-31G* level, which showed that the calculated outcomes were in good agreement with experimental data.  相似文献   

13.
Novel charge transfer (CT) complexes containing donor and acceptor derivatives of diphenyldiacetylene have been synthesised and characterised. The structure of CT complexes was modelled at the B3LYP/6-31G(d)//B3LYP/6-31G(d) level of theory. It was found that the complex formation is mainly due to dipole–dipole interaction between side groups of diacetylene molecules and there was no significant charge transfer between donor and acceptor in the ground state. On the other hand, optical excitation of CT complexes leads to strong charge transfer from donor to acceptor molecule as followed from the modelling using time-dependent density functional theory (DFT) method. Diacetylene molecules adopt strongly bent configuration in CT complexes which is prohibitive for solid-state topochemical polymerisation of diacetylenes  相似文献   

14.
The conformational analysis of 6,8-diphenylimidazo[1,2-α]pyrazine molecule (abbreviated as 68DIP) was performed by using B3LYP/6-31G(d) level of theory to find the most stable form. Two staggered stable conformers were observed on the torsional potential energy surface. The equilibrium geometry, bonding features and vibrational frequencies of 68DIP have been investigated by using the DFT (B3LYP) and HF methods for the lowest energy conformer. The first order hyperpolarizability (β(total)) of this molecular system and related properties (β, μ, <α> and Δα) are calculated using HF/6-311++G(d,p) and B3LYP/6-311++G(d,p) methods based on the finite-field approach. Stability of the molecule arising from hyperconjugative interactions, charge delocalization and C-H?N intramolecular hydrogen-bond-like weak interaction has been analyzed using natural bond orbital (NBO) analysis by using B3LYP/6-311++G(d,p) method. The results show that electron density (ED) in the σ* and π* antibonding orbitals and second order delocalization energies E((2)) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. UV-vis spectrum of the compound was recorded and electronic properties, such as HOMO, LUMO energies, excitation energies and wavelength were performed by TD-DFT/B3LYP, CIS and TD-HF methods by using 6-311++G(d,p) basis set. Finally, the calculation results were applied to simulated infrared spectra of the title compound which show good agreement with observed spectra.  相似文献   

15.
4-Oxopentanoic acid was characterized experimentally by electrospray ionization using a triple quadrupole and time-of-flight analyzer hybrid system. This compound was chosen as a model substance for small organic compounds bearing an acetyl and a carboxyl group. Collision-induced dissociation experiments at different activation energies were performed to elucidate possible fragmentation pathways. These pathways were also studied on the theoretical level using density functional theory (DFT) B3LYP/6-311++G(3df,3pd)//B3LYP/6-31+G(d)+ZPVE calculations. CO2 ejection from the [M-H](-) anion of 4-oxopentanoic acid was observed and the fragmentation pathway studied by DFT reveals a new concerted mechanism for CO2 elimination accompanied by an intramolecular proton transfer within a pentagonal transition state structure. Successive elimination of water and CO from the [M-H](-) anion of 4-oxopentanoic acid was also observed. A rearrangement in the primary deprotonated ketene anion produced after water elimination was found on the theoretical level and leads to CO elimination from the primary product anion [M-H-H2O](-). Energy diagrams along the reaction coordinates of the fragmentation pathways are presented and discussed in detail. Mulliken charge distributions of some important structures are presented.  相似文献   

16.
胡武洪  申伟  李明 《化学学报》2004,62(9):854-859,M003
用量子化学密度泛函理论(DFT)和G3(MP2)B3方法,对O(1↑D)与CH2FCF3的反应进行了研究.在UB3LYP/6-31G(d)计算水平上,优化了反应势能面上各驻点的几何结构,在G3(MP2)B3水平上进行了单点计算,并利用UB3LYP/6-311 G(3df,3pd)计算的波函数进行了电荷密度分析.通过内禀坐标(IRC)计算和振动分析,对反应过渡态进行了确认,并确定了反应机理.  相似文献   

17.
《Comptes Rendus Chimie》2015,18(12):1289-1296
The structural, electro-optical and charge-transport properties of compound trans-3-(3,4-dimethoxyphenyl)-2-(4-nitrophenyl)prop-2-enenitrile (DMNPN) were studied using quantum chemical methods. The neutral, cation and anion molecular geometries were optimized in the ground state using density functional theory (DFT) at the restricted and unrestricted B3LYP/6-31G** level of theory. The excited state geometries were optimized by applying time-dependent DFT at the TD-B3LYP/6-31G** level of theory. The absorption and fluorescence wavelengths were calculated at the TD-CAM-B3LYP/6-31G** and TD-LC-BLYP/6-31G** levels of theory. The distribution pattern of the charge densities on the highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) are discussed. Intramolecular charge transfer was observed from the dimethoxyphenyl to (nitrophenyl)prop-2-enenitrile moieties. The detailed charge-transport behavior of the DMNPN molecule is investigated based on its ionization potential, electron affinity, hole and electron reorganization energies, hole and electron-transfer integrals, and hole and electron intrinsic mobilities. The total/partial densities of states and structure–property relationship are discussed in detail. The higher computed hole intrinsic mobility than electron intrinsic mobility reveals that DMNPN is an efficient hole-transport material.  相似文献   

18.
We report density functional theory geometry optimizations at the B3LYP/6-311G(d,p) level of theory for the title reagent. Four stationary points on the molecular potential energy surface were located and characterized. Three of these stationary points are energy minima, one a saddle point. The minima correspond to the conventional Ph3PBr2 (three-fold Br-P-Br axis with twisted phenyl rings), the ion-pair [Ph3PBr]+Br- and a four-coordinated Ph3PBr2 spoke structure that can best be described as charge transfer on account of the substantial charge transfer from the Ph3P fragment to Br2 (as determined by a standard Mulliken population analysis and other considerations). The particular saddle point found corresponds to a three-fold Br-P-Br structure with coplanar phenyl rings. Single point B3LYP/6-311+g(3d,2p) calculations were done at the stationary point geometries in order to investigate possible deficiencies in the basis set. Solvent effects for the three solvents water, dichloroethane and cyclohexane were modelled using the self consistent reaction field Onsager method at the single point B3LYP/6-311+g(3d,2p) level of theory. In the gas phase, the charge transfer complex is the most stable of the four; in solution it is the least stable.  相似文献   

19.
Fourier transform infrared (FTIR) spectrum of a well-known food dye sunset yellow FCF (E110) has been recorded and analysed. Assignments of the vibrational spectrum has been facilitated by density functional theory (DFT) calculations. The results of the optimized molecular structure obtained on the basis of B3LYP with 6-31G(d) along with the 'LANL2DZ' basis sets give clear evidence for the intramolecular charge transfer (ICT) and strong hydrogen bonding enhancing the optical nonlinearity of the molecule. The first hyperpolarizability of the acidic monoazo dye 'E110' is computed. Azo stretching frequencies have been lowered due to conjugation and pi-electron delocalization. Hydroxyl vibrations with intramolecular H-bonding are analyzed, supported by the computed results. The natural bond orbitals (NBO) analysis confirms this strong hydrogen bond between the hydrogen of the hydroxyl group and nitrogen of the azo group of the molecule. Assignments of benzene and naphthalene ring vibrations are found to agree well with the theoretical wave numbers.  相似文献   

20.
We investigated the performance of the B3LYP density functional in combination with ab initio effective core potentials (ECPs) that are derived from either Hartree-Fock or Dirac-Fock calculations. The transferability of ab initio ECPs is assessed on the basis of comparison with all-electron density functional calculations. For iron(II) porphyrin in particular, our assessment focused on the relative energetic ordering of five low-lying spin states, 1A1G, 3A1G, 3B2G, 5A2G, and 5B1G, and their properties, including optimized structures, charge distribution, spin density, and vibrational frequencies. Our results show that core electron correlation and core-valence electron correlation do not have significant effects on the relative energetics of the spin states of iron porphyrin. Our calculations suggest that effects of replacing the core electrons with ECPs are less significant than the choice of basis functions. We conclude that ab initio ECPs such as LANL2, RCEP, and MEFIT-R may be combined with the B3LYP density functional theory to provide consistent and accurate results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号