首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 714 毫秒
1.
Solid complexes Ln(Sal)3.H2O (Sal: salicylic acid; Ln: La3+, Nd3+, Eu3+, Tb3+) are synthesized, and their photoacoustic (PA) spectra in the UV-Vis region have been recorded. PA intensities of central lanthanide ions are interpreted in terms of the probability of nonradiative transitions. It is found that PA intensity of the ligand increases in the order of Tb(Sal)3.H2O < La(Sal3).H2O < Eu(Sal)3.H2O < Nd(Sal)3.H2O. Different PA intensities of the ligand are interpreted by comparison with the fluorescence spectra. Ternary complexes Eu(Sal)3Phen and Tb(Sal)3Phen (Phen: 1,10-phenanthroline) are synthesized. Compared with their binary complexes, PA intensity of the ligand Sal decreases for Eu(Sal)3Phen, while the reverse is true for that of Tb(Sal)3Phen. The luminescence of Eu3+ increases remarkably when Phen is introduced, and luminescence of Tb3+ decreases greatly when Phen is added. The intramolecular energy transfer and relaxation processes in the complexes are discussed from two aspects: radiative and nonradiative relaxations.  相似文献   

2.
The effect of pressure on the phase behavior of the liquid crystalline complex [Eu(bta)(3)L(2)] (bta is benzoyltrifluoroacetonate, and L is the Schiff base 2-hydroxy-N-octadecyl-4-tetradecyloxybenzaldimine) was studied by X-ray diffraction, Raman spectroscopy, and luminescence spectroscopy. The pressure was varied between ambient pressure and 8.0 GPa. [Eu(bta)(3)L(2)] exhibits a smectic A (SmA) phase at room temperature. The complex undergoes a transition from the SmA phase to a solid lamellar structure around 0.22 GPa and another transition from the solid lamellar phase to an amorphous state from 1.6 to 3.5 GPa. At low pressures, the smectic layer spacing increases, and the intermolecular distance decreases. Above 3.5 GPa, both the interlamellar and the intermolecular spacings hardly change, but the intensity of X-ray reflections exhibits a remarkable decrease and eventually vanishes. An interpretation of the changes in the molecular structure is given. It was found that less interdigitation of the alkyl chains situated in adjacent layers and/or a full extension of the alkyl chains occurred at low pressures and that the second phase transition was accompanied by a transfer of the hydrogen atom from the nitrogen atom of the imine group to the oxygen atom of the Schiff base ligand. The effect of applying pressure equals that of the lanthanide contraction on the phase behavior.  相似文献   

3.
利用缺位填充法合成了12个γ-[SiW10O36]8-夹心型稀土元素单取代多酸化合物K13[Ln(SiW10O36)2]·nH2O(Ln=La3+,Ce3+,Pr3+,Nd3+,Sm3+,Eu3+,Gd3+,Tb3+,Dy3+,Ho3+,Er3+,Yb3+).通过元素分析确定其组成,由红外光谱、紫外-可见吸收光谱、循环伏安及室温磁化率测定结果确认稀土离子与γ-[SiW10O36]8-相配位;183WNMR及荧光光谱结果则表明,稀土离子处于2个γ-[SiW10O36]8-构成的八配位环境中,标题化合物具有夹心型D2d对称性结构.  相似文献   

4.
The synthesis and liquid crystalline properties of lanthanide complexes with different but structurally related Schiff's base ligands are described. The complexes all contain nitrate counterions and have the stoichiometry [Ln(LH) 3 (NO 3 ) 3 ], where Ln is a trivalent rare-earth ion (La, Nd, Gd or Ho) and LH is a Schiff's base ligand. None of the Schiff's base ligands exhibits mesomorphism, but some of the complexes do (SmA phase). It is shown that the presence or absence and the position of substituents on the ligand determine whether or not the complexes show mesomorphism. The thermal behaviour of these compounds has been investigated by hot stage polarizing microscopy and differential scanning calorimetry.  相似文献   

5.
合成了Eu(Dbm)3·Phen同核和Eu0.8Ln0.2(Dbm)3·Phen(Ln:Er3+,Y3+)异核固体配合物微晶粉末及其掺杂的SiO2凝胶样品,在300~800nm范围内测定了其光声光谱.结果表明,配合物Eu0.8Er0.2(Dbm)3·Phen,Eu(Dbm)3·Phen和Eu0.8Y0.2(Dbm)3·Phen配体吸收处的光声强度依次减弱;而Eu0.8Y0.2(Dbm)3·Phen和Eu(Dbm)3·Phen配合物掺杂的凝胶则情况相反.研究发现,光声强度与稀土配合物分子中能量传递过程相关,Er3+,Y3+离子的引入改变了三元配合物的弛豫过程,且配合物在粉末状态和凝胶状态的弛豫历程不尽相同.结合荧光光谱,从无辐射跃迁和辐射跃迁的角度分析了标题化合物在两种不同固体状态下的发光性质.  相似文献   

6.
Grimes TS  Tian G  Rao L  Nash KL 《Inorganic chemistry》2012,51(11):6299-6307
Time-resolved fluorescence spectroscopy and Fourier transform IR spectroscopy have been applied to characterize the coordination environment of lipophilic complexes of Eu(3+) with bis(2-ethylhexyl)phosphoric acid (HDEHP) and (2-ethylhexyl)phosphonic acid mono(2-ethylhexyl) ester (HEH[EHP]) in 1,4-diisopropylbenzene (DIPB). The primary focus is on understanding the role of lactate (HL) in lanthanide partitioning into DIPB solutions of HDEHP or HEH[EHP] as it is employed in the TALSPEAK solvent extraction process for lanthanide separations from trivalent actinides. The broader purpose of this study is to characterize the changes that can occur in the coordination environment of lanthanide ions as metal-ion concentrations increase in nonpolar media. The optical spectroscopy studies reported here complement an earlier investigation of similar solutions using NMR spectroscopy and electrospray ionization mass spectrometry. Emission spectra of Eu(3+) complexes with HDEHP/HEH[EHP] demonstrate that, as long as the Eu(3+) concentration is maintained well below saturation of the organic extractant solution, the Eu(3+) coordination environment remains constant as both [HL](org) and [H(2)O](org) are increased. If the total organic-phase lanthanide concentration is increased (by extraction of moderate amounts of La(3+)), the (5)D(0) → (7)F(1) transition singlet splits into a doublet with a notable increase in the intensity of both (5)D(0) → (7)F(1) and (5)D(0) → (7)F(2) electronic transitions. The increased multiplicity in the emission spectra indicates that Eu(3+) ions are present in multiple coordination environments. The increased emission intensity of the 614 nm band implies an overall reduction in symmetry of the extracted Eu(3+) complex in the presence of macroscopic La(3+). Although [H(2)O](org) increases to above 1 M at high [HL](tot), this water is not associated with the Eu(3+) metal center. IR spectroscopy results confirm a direct Ln(3+)-lactate interaction at high concentrations of lanthanide and lactate in the extractant phase. At low organic-phase lanthanide concentrations, the predominant complex is almost certainly the well-known Ln(DEHP·HDEHP)(3). As lanthanide concentrations in the organic phase increase, mixed-ligand complexes with the general stoichiometry Ln(L)(n)(DEHP)(3-n) or Ln(L)(n)(DEHP·HDEHP)(3-n) become the dominant species.  相似文献   

7.
The synthesis and liquid crystalline properties of lanthanide complexes with different but structurally related Schiff's base ligands are described. The complexes all contain nitrate counterions and have the stoichiometry [Ln(LH)3 (NO3)3], where Ln is a trivalent rare-earth ion (La, Nd, Gd or Ho) and LH is a Schiff's base ligand. None of the Schiff's base ligands exhibits mesomorphism, but some of the complexes do (SmA phase). It is shown that the presence or absence and the position of substituents on the ligand determine whether or not the complexes show mesomorphism. The thermal behaviour of these compounds has been investigated by hot stage polarizing microscopy and differential scanning calorimetry.  相似文献   

8.
New acetamide and carbamide complexes LnI3 · 4Ur · 4H2O (Ln = La, Eu, Dy, Ho, Y; Ur is carbamide) and LnI3 · 4AA · 4H2O (Ln = Nd, Eu, Dy, Ho, Y; AA is acetamide) are synthesized. The complexes are characterized by the data of chemical analysis, IR spectroscopy, and X-ray diffraction analysis. The ligands (water, carbamide, and acetamide molecules) are coordinated by the rare-earth element atoms through the oxygen atom, and the coordination polyhedron is a distorted square antiprism. The iodide ions are not coordinated and are located in the external sphere. The structural characteristics of the complexes are compared in the series [Ln(L)4(H2O)4]I3 (Ln = La, Nd, Eu, Gd, Dy, Ho, Er; L = AA, Ur).  相似文献   

9.
Fourteen three-dimensional coordination polymers of general formula [Ln(lNO)(H2O)(SO4)]n, where Ln = La, 1.La; Ce, 2.Ce; Pr, 3.Pr; Nd, 4.Nd; Sm, 5.Sm; Eu, 6.Eu; Gd, 7.Gd; Tb, 8.Tb; Dy, 9.Dy; Ho, 10.Ho; Er. 11.Er; Tm, 12.Tm; Yb, 13.Yb; and Lu, 14.Lu; INO = isonicotinate-N-oxide, have been synthesized by hydrothermal reactions of Ln3+, MnCO3, MnSO4 x H2O, and isonicotinic acid N-oxide (HINO) at 155 degrees C and characterized by single-crystal X-ray diffraction, IR, thermal analysis, luminescence spectroscopy, and the magnetic measurement. The structures are formed by connection of layer, chain, or dimer of Ln-SO4 by the organic connector, INO. They belong to three structural types that are governed exclusively by the size of the ions: type I for the large ions, La, Ce, and Pr; type II for the medium ions, Nd, Sm, Eu, Gd, and Tb; and type III for the small ions, Dy, Ho, Er, Tm, Yb, and Lu. Type I consists of two-dimensional undulate Ln-sulfate layers pillared by INO to form a three-dimensional network. Type II has a 2-fold interpenetration of "3D herringbone" networks, in which the catenation is sustained by extensive pi-pi interactions and O-H...O and C-H...O hydrogen bonds. Type III comprises one-dimensional chains that are connected by INO bridges, resulting in an alpha-Po network. The progressive structural change is due to the metal coordination number decreasing from nine for the large ions via eight to seven for the small ions, demonstrating clearly the effect of lanthanide contraction. The sulfate ion acts as a micro4- or micro3-bridge, connecting two, three, or four metals, and is both mono- and bidentate. The INO ligand acts as a micro3- or micro2-bridge with carboxylate group in syn-syn bridging or bidentate chelating mode. The materials show considerably high thermal stability. The magnetic properties of 4.Nd, 6.Eu, 7.Gd, and 13.Yb and the luminescence properties of 6.Eu and 8.Tb are also investigated.  相似文献   

10.
The enantiomerically pure pinene-bipyridine-based receptor, (-) or (+) L(-), diastereoselectively self-assembles in dry acetonitrile in the presence of Ln(III) ions (Ln = La, Pr, Nd, Sm, Eu, Gd, and Tb) to give a C3-symmetrical, pyramidal architecture with the general formula [Ln4(L)9(mu3-OH)](ClO4)2) (abbreviated as tetra-Ln4L9). Three metal centers shape the base: an equilateral triangle surrounded by two sets of helically wrapping ligands with opposite configurations. This part of the structure is very similar to the species [Ln3(L)6(mu3-OH)(H2O)3](ClO4)2) (recently reported by us and abbreviated as tris-LnL2) formed by the ligand and the Ln(III) ions when the reactions are performed in methanol. The tetranuclear structure is completed by a capping, helical unit LnL3 whose chirality is also predetermined by the chirality of the ligand. A complete characterization of these isostructural, chiral compounds was performed in solid state (X-ray, IR) and in solution (ES-MS, NMR, CD, UV-vis and emission spectroscopies). The sign and the intensity of the CD bands in the region of the pi pi* transitions of the bipyridine (absolute Delta epsilon values at 327 nm are about 280 M(-1) x cm(-1)) are highly influenced by the helicity of the capping fragment LnL3. The photophysical properties (lifetime, quantum yield) of the visible (Eu and Tb complexes) and NIR (Nd complex) emitters indicate a good energy transfer between the ligands and the metal centers. The two related superstructures tetra-Ln4L9 and tris-LnL2 can be interconverted in acetonitrile, the switching process depending on the amount of water present in the solvent, the size of the Ln(III) ion, and the concentration. The weak chiral recognition capabilities of the self-assembly leading to the formation of tetra-Ln4L9 either by direct synthesis from a racemic mixture of the ligand and Ln(III) ions or by the conversion of a tris-Ln[(+/-)-L]2 racemate were likewise demonstrated.  相似文献   

11.
采用sol-gel法合成了系列发光体Li2O-Ln2O3-SiO2:Eu3+,Bi3+,并确定了发光体的物相结构.当Ln3+=Y3+和Ln3+=La3+时,紫外光激发下Eu3+的发射分别以红光和橙光为主,只存在一种Eu3+发光中心;Ln3+=Gd3+时,至少存在两种Eu3+发光中心和两种Bi3+发光中心(共掺杂Eu3+,Bi3+),Bi3+的吸收和发射所处的能量位置最低,4f格位的Bi3+发生了向Eu3+的有效能量传递.  相似文献   

12.
Sodium and potassium tetrakis(3,5-di-tert-butylpyrazolato)lanthanoidate(III) complexes [M[Ln(tBu(2)pz)(4)]] have been prepared by reaction of anhydrous lanthanoid trihalides with alkali metal 3,5-di-tert-butylpyrazolates at 200-300 degrees C, and a 1,2,4,5-tetramethylbenzene flux for M=K. On extraction with toluene (or occasionally directly from the reaction tube) the following complexes were isolated: [Na(PhMe)[Ln(tBu(2)pz)(4)]] (1 Ln; 1 Ln=1 Tb, 1 Ho, 1 Er, 1 Yb), [K(PhMe)[Ln(tBu(2)pz)(4)]].2 PhMe (2 Ln; 2 Ln=2 La, 2 Sm, 2 Tb, 2 Ho, 2 Yb, 2 Lu), [Na[Ln(tBu(2)pz)(4)]](n) (3 Ln; 3 Ln=3 La, 3 Tb, 3 Ho, 3 Er, 3 Yb), [K[Ln(tBu(2)pz)(4)]](n) (4 Ln; 4 Ln=4 La, 4 Nd, 4 Sm, 4 Tb, 4 Ho, 4 Er, 4 Yb, 4 Lu), with the last two classes generally being obtained by loss of toluene from 1 Ln or 2 Ln, and [Na(tBu(2)pzH)[Ln(tBu(2)pz)(4)]].PhMe (5 Ln; 5 Ln=5 Nd, 5 Er, 5 Yb). Extraction with 1,2-dimethoxyethane (DME) after isolation of 2 Ho yielded [K(dme)[Ho(tBu(2)pz)(4)]] (6 Ho). X-ray crystal structures of 1 Ln (=1 Tb, 1 Ho; P2(1)/c), 2 Ln (=2 La, 2 Sm, 2 Tb, 2 Yb, 2 Lu; Pnma), 3,4 Ln (=3 La, 3 Er, 4 Sm; P2(1)/m), and 5 Ln (=5 Nd, 5 Er, and 5 Yb; P1) show each group to be isomorphous regardless of the size of the Ln(3+) ion. All complexes contain eight-coordinate [Ln(eta(2)-tBu(2)pz)(4)] units. These are further linked to the alkali metal by bridging through two (1,2,5 Ln) or three (3,4 Ln) tBu(2)pz groups which show striking coordination versatility. Sodium is coordinated by an eta(4)-PhMe, a micro-eta(2):eta(2)-tBu(2)pz, and a micro-eta(4)(Na):eta(2)(Ln)-tBu(2)pz ligand in 1 Ln, and by one eta(1)-tBu(2)pzH and two micro-eta(3)(Na):eta(2)(Ln) ligands in 5 Ln. By contrast, potassium has one eta(6)-PhMe and two micro-eta(5)(K):eta(2)(Ln) ligands in 2 Ln. Classes 3,4 Ln form polymeric chains with the alkali metal bonded by two micro-eta(3)(NNC-M):eta(2)(Ln)-tBu(2)pz ligands within [MLn(tBu(2)pz)(4)] units which are joined together by eta(1)(C)-tBu(2)pz-Na, K linkages.  相似文献   

13.
Lees AM  Platt AW 《Inorganic chemistry》2003,42(15):4673-4679
The reactions of lanthanide nitrates, Ln(NO(3))(3), with bis(diphenylphosphino)methane dioxide, Ph(2)P(O)CH(2)P(O)Ph(2) (L), lead to complexes with three distinct classes of structure. At low ratios of Ln:L (<1:1.5) in acetonitrile the ionic complexes [Ln(NO(3))(2)L(2)](+)[Ln(NO(3))(4)L](-) (Ln = Pr, Eu) have been isolated. When carried out with a 1:2 or higher ratio in ethanol the reaction yields Ln(NO(3))(3)L(2) (Ln = La,Ce) and [Ln(NO(3))(2)L(2)H(2)O](+)[NO(3)](-) (Ln = Nd, Gd, Ho). Geometrical isomerism is found for the cations [Ln(NO(3))(2)L(2)H(2)O](+) and is attributed to the extent of hydrogen bonding to the coordinated water. Ligand redistribution occurs on heating in the solid state giving yellow solids in all cases. Crystallization of these materials from ethanol or acetonitrile gives [Ln(NO(3))L(3)](2+).2[NO(3)](-), which have been structurally characterized for Ln = Gd and Yb. Electrospray mass spectra indicate that extensive ligand exchange reactions occur in solution.  相似文献   

14.
Thermodynamic equilibria of complexes of 1,3-diamino-2-hydroxypropane-N,N,N',N'-tetraacetic acid (DHPTA) with heavy lanthanides (Tb3+, Ho3+ and Lu3+) in aqueous solution have been investigated with potentiometry, spectrophotometry, luminescence spectroscopy and nuclear magnetic resonance spectroscopy (NMR). The results identified three 1:1 Ln/DHPTA (Ln: Tb3+, Ho3+ and Lu3+) complexes with different degrees of deprotonation, LnL−, Ln(H−1L)2−, and Ln(OH)(H−1L)3−, where H−1 represents the deprotonation of the hydroxyl group between two methyliminodiacetate groups in the DHPTA structure. The alkoxide form of the DHPTA hydroxyl group directly binds to the lanthanide atom, forming highly strong chelation. The complex of Ln(H−1L)2− could be present as a dimeric or polymeric complex in solution.  相似文献   

15.
Li X  Liu W  Guo Z  Tan M 《Inorganic chemistry》2003,42(26):8735-8738
Lanthanide nitrate complexes with the heptadentate ligand L (6-[2-(2-(diethylamino)-2-oxoethoxy)ethyl]-N,N,12-triethyl-11-oxo-3,9-dioxa-6,12-diazatetradecanamide), [Ln(2)L(NO(3))(6)] (Ln = La, Nd, Sm, Eu, Ho), have been prepared and characterized. The X-ray crystallographic studies show that, in [La(2)L(NO(3))(6)(H(2)O)].H(2)O (1), two complex cations [LaL(H(2)O)](3+) are linked by a hexanitrato anion [La(NO(3))(6)](3)(-) and form a trinuclear cation. In [Nd(2)L(NO(3))(6)(H(2)O)].CHCl(3).1/2CH(3)OH.1/2H(2)O (2), one complex cation [NdL(H(2)O)](3+) and a hexanitrato complex anion [Nd(NO(3))(6)](3)(-) are linked by a bridging NO(3)(-) to form a dinuclear complex. In both complexes, the bridging nitrate is an unusual tetradentate ligand. The metal ions are 12-coordinated in hexanitrato anions and 10-coordinated in complex cations. The chainlike supramolecular structures of La(3+) complex are parallel and have no hydrogen bonds in between, while, in the Nd(3+) complex, a chiral cavity is formed by hydrogen bonds between two adjacent supramolecular chains. These influences are further investigated by assessing the separation efficiency of L and (1)H NMR spectra of its lanthanide nitrate mixtures in solution.  相似文献   

16.
This report covers studies in trivalent lanthanide complexation by two simple cyclohexanetriols that are models of the two coordination sites found in sugars and derivatives. Several complexes of trivalent lanthanide ions with cis,cis-1,3,5-trihydroxycyclohexane (L(1)()) and cis,cis-1,2,3-trihydroxycyclohexane (L(2)()) have been characterized in the solid state, and some of them have been studied in organic solutions. With L(1)(), Ln(L)(2) complexes are obtained when crystallization is performed from acetonitrile solutions whatever the nature of the salt (nitrate or triflate) [Ln(L(1)())(2)(NO(3))(2)](NO(3)) (Ln = Pr, Nd); [Ln(L(1)())(2)(NO(3))H(2)O](NO(3))(2) (Ln = Eu, Ho, Yb); [Ln(L(1)())(2)(OTf)(2)(H(2)O)](OTf) (Ln = Nd, Eu). Lanthanum nitrate itself gives a mixed complex [La(L(1)())(2)(NO(3))(2)][LaL(1)()(NO(3))(4)] from acetonitrile solution while [La(L(1)())(2)(NO(3))(2)](NO(3)) is obtained using dimethoxyethane as reaction solvent and crystallization medium. With L(2)(), Ln(L)(2) complexes have also been crystallized from methanol solution [Ln(L(2)())(2)(NO(3))(2)]NO(3), (Ln = Pr, Nd, Eu). Single-crystal X-ray diffraction analyses are reported for these complexes. Complex formation in solution has been studied for several triflate salts (La, Pr, Nd, Eu, and Yb) with L(1 )()and L(2)(), respectively in acetonitrile and in methanol. In contrast to the solid state, both structures Ln(L) and Ln(L)(2) equilibrate in solution, as was demonstrated by low-temperature (1)H NMR and electrospray ionization mass spectrometry experiments. Competing experiments in complexing abilities of L(1)() and L(2)() with trivalent lanthanide cations have shown that only L(2)() exhibits a small selectivity (Nd > Pr > Yb > La > Eu) in methanol.  相似文献   

17.
本文利用非等温DSC曲线对十二种镧系元素异硫氰酸盐与苄胺形成的配合物Ln(NCS)3·4C6H5CH2NH2(Ln=La、Pr、Nd、Sm、Eu、Ge、Tb、Dy、Ho、Er、Tm、Yb)进行了非等温动力学研究, 并运用积分法和微分法进行了分析, 推断了它们的热分解反应机理函数。  相似文献   

18.
余玉叶 《化学研究》2006,17(1):16-19
合成了双水杨醛缩1,10-癸二胺Sch iff碱配体(C24H32N2O2,以L表示)与稀土Ln3+的15种新的固体配合物[LnL(NO3)3].nH2O(Ln=La,Ce,Pr,Nd,Sm,Eu,n=0;Ln=Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Y,n=1).利用元素分析、摩尔电导、红外光谱、热分析等方法进行表征.中心金属离子Ln3+与Sch iff碱配体中的酚羟基氧以及硝酸根中的氧发生配位,配位数为8.  相似文献   

19.
The segmental tris-tridentate ligand L7 reacts with stoichiometric quantities of Ln(III) (Ln=La-Lu) in acetonitrile to give the complexes [Ln(2)(L7)(3)](6+) and [Ln(3)(L7)(3)](9+). Formation constants point to negligible size-discriminating effects along the lanthanide series, but Scatchard plots suggest that the self-assembly of the trimetallic triple-stranded helicates [Ln(3)(L7)(3)](9+) is driven to completion by positive cooperativity, despite strong intermetallic electrostatic repulsions. Crystallization provides quantitatively [Ln(3)(L7)(3)](CF(3)SO(3))(9) (Ln=La, Eu, Gd, Tb, Lu) and the X-ray crystal structure of [Eu(3)(L7)(3)](CF(3)SO(3))(9).(CH(3)CN)(9).(H(2)O)(2) (Eu(3)C(216)H(226)N(48)O(35)F(27)S(9), triclinic, P1, Z=2) shows the three ligand strands wrapped around a pseudo-threefold axis defined by the three metal ions rigidly held at about 9 A. Each metal ion is coordinated by nine donor atoms in a pseudo-trigonal prismatic arrangement, but the existence of terminal carboxamide units in the ligand strands differentiates the electronic properties of the terminal and the central metallic sites. Photophysical data confirm that the three coordination sites possess comparable pseudo-trigonal symmetries in the solid state and in solution. High-resolution luminescence analyses evidence a low-lying LMCT state affecting the central EuN(9) site, so that multi-metal-centered luminescence is essentially dominated by the emission from the two terminal EuN(6)O(3) sites in [Eu(3)(L7)(3)](9+). New multicenter equations have been developed for investigating the solution structure of [Ln(3)(L7)(3)](9+) by paramagnetic NMR spectroscopy and linear correlations for Ln=Ce-Tb imply isostructurality for these larger lanthanides. NMR spectra point to the triple helical structure being maintained in solution, but an inversion of the magnitude of the second-rank crystal-field parameters, obtained by LIS analysis, for the LnN(6)O(3) and LnN(9) sites with respect to the parameters extracted for Eu(III) from luminescence data, suggests that the geometry of the central LnN(9) site is somewhat relaxed in solution.  相似文献   

20.
The synthesis and characterization of a series of neo-pentoxide (OCH2C(CH3)3 or ONep) derivatives of group 3 and the lanthanide (Ln) series' metals were undertaken via an amide/alcohol exchange route. Surprisingly, the products isolated and characterized by single-crystal X-ray diffraction yielded isostructural species for every trivalent cation studied: [Ln(mu-ONep)2(ONep)]4 [Ln=Sc (1), Y (2), La (3), Ce (4), Pr (5), Nd (6), Sm (7), Eu (8), Gd (9), Tb (10), Dy (11), Ho (12), Er (13), Tm (14), Yb (15), Lu (16)]. Compounds 3, 4, 6, and 11 have been previously reported. Within this series of complexes, the Ln metal centers are oriented in a square with each Ln-Ln edge interconnected via two mu-ONep ligands; each metal center also binds one terminal ONep ligand. NMR data of 1-3 indicate that the solid-state structure is retained in solution. FTIR spectroscopy (KBr pellet) revealed the presence of significant Ln---H-C interactions within one set of the bridging ONep ligands in all cases; the stretching frequencies of these C-H bonds appear to increase in magnitude with decrease in metal ion radius. These complexes were used to generate nanoparticles through solution hydrolysis routes, resulting in the formation of lanthanide oxide nanoparticles and rods. The emission properties of these ceramics were preliminarily investigated using UV-vis and PL measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号