首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present work is dedicated to the XRD, ED and HREM characterization of a new bismuth copper oxyphosphate Bi∼6.2Cu∼6.2O8(PO4)5 (a=11.599(2)Å, , c=37.541(5)Å, R1=0.0755, Rw2=0.174, G.S Pn21a). The relatively long size of its c parameter is due to the arrangement along this direction of two kinds of ribbon-like polycations formed by edge sharing O(Bi, Cu)4 tetrahedra. The existence of such cations is characterized by the b∼5.2 Å value intrinsic to the ribbons structure and commonly found in bismuth oxyphosphate materials. In the title compound, 2-tetrahedra wide [Bi∼2.4Cu∼3.6O4]6.4+ and 3-tetrahedra wide [Bi∼5Cu∼3O6]9+ ribbons are isolated by phosphate groups and alternate along c. The interstitial site created between two different sizes ribbons is occupied by Cu2+ cations disordered over several close crystallographic sites. The mixed Bi3+/Cu2+ nature of certain edge-of-ribbons positions induces a disorder over several configurations of the phosphate groups. The concerned oxygen atoms form the environment of the disordered interstitial Cu2+ cations which occupy tunnels formed by the phosphate anions. The high-resolution electron microscope study enables a precise correlation between the observed images and the refined crystal structure, evidencing the polycations visualization. Furthermore, this material being the second example of partially disordered compound similar chemical system, some topological rules can be deduced. The b-axis doubling was observed by ED and HREM and is assigned to the ordering of interstitial Cu2+ within tunnels cations. A partial intra-tunnel ordering was also observed.  相似文献   

2.
DFT calculations have been carried out for Cu4Bi5S10 and Bi2S3 to provide an analysis of the relation between electronic structure, lone electron pairs and the local geometry. The effect of pressure is considered in Bi2S3 and the results are compared to published experimental data. Bi3+ in Cu4Bi5S10 is found at both symmetrically and asymmetrically coordinated sites, whereas the coordination environments of Bi in Bi2S3 are asymmetric at room conditions and get more regular with increasing pressure. The charge density maps of the asymmetric sites show the lone pairs as lobes of non-shared charge. These lobes are related to an effective Bi s-Bi p hybridization resulting from coupling to S p orbitals, supporting the modern view of the origin of the stereochemically active lone pair. No effective Bi s-p hybridization is seen for the symmetric site in Cu4Bi5S10, whereas Bi s-p hybridization coexists with a much reduced lone pair in Bi2S3 at high pressure.  相似文献   

3.
Bismuth(II) Chalcogenometallates(III) Bi2M4X8, Compounds with Bi24+ Dumbbells (M = Al, Ga and X = S, Se) The ternary bismuth(II) chalcogenometallates(III) Bi2M4X8 (with M = Al, Ga and X = S, Se) were synthesized from the binary chalcogenides M2X3 and Bi2X3 and elementary bismuth. All compounds are diamagnetic semiconductors with Eg (opt.) = 1.8–2.7 eV. The phases (except Bi2Al4Se8) are thermodynamically stable and decompose peritectically above 965–1020 K. Bi2Al4Se8 is metastable below 825 K and is obtained only by rapid quenching from T > 825 K. The isotypic compounds crystallize in a new tetragonal tP28 structure type (P4/nnc). The characteristic unit is the hitherto unknown clustercation Bi24+, with the mean bond length d(Bi–Bi) = 314.2 pm, the Raman frequency 102 cm–1 ≤ νs ≤ 108 cm–1, and the mean force constant of f = 0.68 N · cm–1. The Electron Localization Function, ELF, shows the covalent Bi–Bi bond, the lone electron pairs of the ψ-octahedrally coordinated Bi(II) cations, and the polar character of the Bi–X bonds.  相似文献   

4.
The structure of the pyrochlore-type oxide Bi2InNbO7 has been investigated between room temperature and 700 °C using electron and synchrotron X-ray powder diffraction and at room temperature and 10 K using neutron diffraction methods. Bi2InNbO7 exhibits an A2B2O7 cubic pyrochlore-type average structure at all temperatures that is characterized by an apparently random mixing of the In3+ and Nb5+ cations on the octahedral B sites. The Bi cations on the eight-coordinate pyrochlore A sites are displacively disordered, presumably as a consequence of their lone pair electron configuration. Heating the sample does not alter this disorder.  相似文献   

5.
The crystal structure of the new Bi∼3Cd∼3.72Co∼1.28O5(PO4)3 has been refined from single crystal XRD data, R1=5.37%, space group Abmm, a=11.5322(28) Å, b=5.4760(13) Å, c=23.2446(56) Å, Z=4. Compared to Bi∼1.2M∼1.2O1.5(PO4) and Bi∼6.2Cu∼6.2O8(PO4)5, this compound is an additional example of disordered Bi3+/M2+ oxyphosphate and is well described from the arrangement of double [Bi4Cd4O6]8+ (=D) and triple [Bi2Cd3.44Co0.56O4]6+ (=T) polycationic ribbons formed of edge-sharing O(Bi,M)4 tetrahedra surrounded by PO4 groups. According to the nomenclature defined in this work, the sequence is TT/DtDt, where t stands for the tunnels created by PO4 between two subsequent double ribbons and occupied by Co2+. The HREM study allows a clear visualization of the announced sequence by comparison with the refined crystal structure. The Bi3+/M2+ statistic disorder at the edges of T and D entities is responsible for the PO4 multi-configuration disorder around a central P atom. Infrared spectroscopy and neutron diffraction of similar compounds (without the highly absorbing Cadmium) even suggests the long range ordering loss for phosphates. Therefore, electron diffraction shows the existence of a modulation vector q*=1/2a*+(1/3+ε)b* which pictures cationic ordering in the (001) plane, at the crystallite scale. This ordering is largely lost at the single crystal scale. The existence of mixed Bi3+/M2+ positions also enables a partial filling of the tunnels by Co2+ and yields a composition range checked by solid state reaction. The title compound can be prepared as a single phase and also the M=Zn2+ term can be obtained in a biphasic mixture. For M=Cu2+, a monoclinic distortion has been evidenced from XRD and HREM patterns but surprisingly, the orthorhombic ideal form can also be obtained in similar conditions.  相似文献   

6.
《Solid State Sciences》2000,2(2):243-247
The crystal structure of Na3Bi5(PO4)6 was solved using the single-crystal X-ray diffraction technique. The structural refinement has led to a reliability factor of R1=0.0257 (wR2=0.0533) for 428 independent reflections. This compound was found to crystallize in the cubic system (space group I4̄3d) with eulytite structure and the lattice parameters: a=10.097 (4) Å, V=1029.38 Å3, Z=2, Dcalc.=5.43 g cm−3 (Dexp.=5.32(5) g cm−3). The structure is characterized by the existence of one single general position (48a) for oxygen anions and two distinguished positions (16c) occupied by Na+ and Bi3+ cations, respectively. The site occupation factors are equal to 3/8 and 5/8 for sodium and bismuth, respectively. Although all PO distances are identical (1.529(4) Å), the OPO angles ranging from 108.06 (15) to 112.32 (31)°, show that [PO4]3− are rather distorted. Both sodium and bismuth cations are located in octahedral sites with corresponding mean distances of NaO and BiO equal to 2.428 and 2.386 Å, respectively. As expected from the close values of the ionic radii of Na+ and Bi3+, these distances lie in the same range.  相似文献   

7.
Bismuth Monoiodide, a Compound with Bi(O) and Bi(II) Bismuth monoiodide was synthesized in closed tubes from the elements as well as from Bi and HgI2 as a black coloured crystalline compound. With increasing temperature BiI passes two transitions. α-BiI is stable below 370 K and changes to β-BiI by a martensitic transition. γ-BiI is the stable modification above 564 K and decomposes at 585 K peritectically to BiI3 and a lower iodide. All three modification crystallize in the monoclinic space group C2/m. The structures (single crystal studies) of α-BiI and β-BiI are characterized by onedimensional infinite chains [Bi4I4] with covalent bonds but only weak interactions in between. The [Bi4I4]-chains are built up by two completely different Bi atoms. Bi(A) is only bonded to three Bi whereas Bi(B) has bonds to one Bi and four I. The average bond lengths are Bi? Bi = 304.5 pm and Bi? I = 313.7 pm respectively. The configuration of the Bi(A) atoms is typical for BiO and that one of the Bi(B) atoms is characteristic for Bi2+ with the electron configuration s2p1. Therefore, α-BiI and β-BiI are mixed valence compounds [BiOBi2+I4]. The structures are variants of the simple cubic polonium type of structure and differ in the stacking of connected units. The structures and their transitions, the possible configurations for monohalides BiX on principle as well as the energy balances of the disproportionation of Bi+ are discussed together in detail.  相似文献   

8.
The new hypervalent binary phase EuBi2 was obtained from high temperature solid-state reactions of the pure metal elements in welded Ta tubes under argon atmosphere. Its structure was established by single-crystal X-ray diffraction. The title compound crystallizes in the tetragonal space group I41/amd (No. 141) with cell parameters of , and Z=8. The structure of EuBi2 is isotypic with HfGa2 and features 1D Bi zigzag anionic chains along both a- and b-axes and 2D Bi square sheets normal to c-axis. It can be formulated as Eu2+(Bi)chain(Bi)square.  相似文献   

9.
Single crystals of Bi(C2O4)OH were obtained by the slow diffusion of Bi3+ cations through silica gel impregnated with oxalic acid. The structure was solved in the Pnma space group with a=6.0853(2) Å, b=11.4479(3) Å, c=5.9722(2) Å, leading to R=0.0188 and wR=0.0190 from 513 unique reflections. The bismuth coordination polyhedron is a BiO6E pentagonal bipyramid with the lone pair E sitting at an axial vertex. The opposite axial vertex is occupied by a hydroxyl oxygen atom, which is also an equatorial corner of a neighboring BiO6E bipyramid. The sharing of the hydroxyl oxygen atoms build zig-zag chains running down the [100] direction. These chains are aligned in a sheet parallel to the (010) plane and are further connected through oxalate ions to form a three-dimensional arrangement. On heating, Bi(C2O4)OH decomposes to the meta-stable quadratic β-Bi2O3 phase.  相似文献   

10.
Three-layer Aurivillius ceramics Bi2SrCaNb2TiO12, Bi2Sr1.5Ca0.5Nb2TiO12, Bi2Sr2Nb2TiO12, Bi2Sr1.5Ba0.5Nb2TiO12, and Bi2SrBaNb2TiO12 were formed via solid-state synthesis and their structures characterized by combined Rietveld analysis of powder X-ray and neutron diffraction data. Static disorder was observed in the form of mixed cation occupancies between the Bi and the Sr, Ca, or Ba on the A sites in the perovskite block, as well as between the Nb and Ti sites. The degree of site mixing between the Bi site in the (Bi2O2)2+ layer and the perovskite-block A site increased with increasing average A site cation radius (ACR). Bi2SrBaNb2TiO12 displayed the greatest degree of Bi-A site static disorder. Bond valence sum (BVS) calculations showed an increase in A site BVS with average A site cation radius. All compositions except Bi2SrCaNb2TiO12 had overbonded A sites and the A site BVS increased nearly linearly with lattice parameter and ACR. A preference was observed for Ca2+ to remain on the A site while Ba2+ preferred to disorder to the Bi site, indicating that the cation site mixing occurs to reduce strain between the (Bi2O2)2+ layer and the perovskite block in the structure. Unusually large Ti site BVS and thermal parameter for the equatorial oxygen in the TiO6 octahedra were observed in structural models that included full oxygen occupancy. However, excellent structure models and more reasonable BVS values were obtained by assuming oxygen vacancies in the TiO6 octahedra. AC impedance spectroscopy performed on all samples indicate that the total electrical conductivity is on the order of at 900°C.  相似文献   

11.
The identity of the pyrochlore phase seen during the synthesis of ferroelectric Bi4−xLnxTi3O12 Aurivillius oxides is shown to be Bi2/3Ln4/3Ti2O7. This pyrochlore is only stable for Ln3+=Sm3+ or smaller. For larger lanthanides the layered Aurivillius oxide is favoured. The presence of six-fold disorder, associated with the Bi 6s2 lone pair electrons, is believed to stabilise the unexpected stoichiometry of this oxide. Precise structures, obtained by Rietveld refinement from synchrotron X-ray diffraction data, of three examples Ln3+=Eu, Ho and Yb are presented.  相似文献   

12.
The quest for new oxides with cations containing active lone‐pair electrons (E) covers a broad field of targeted specificities owing to asymmetric electronic distribution and their particular band structure. Herein, we show that the novel compound BaCoAs2O5, with lone‐pair As3+ ions, is built from rare square‐planar Co2+O4 involved in direct bonding between As3+E and Co2+ dz2 orbitals (Co? As=2.51 Å). By means of DFT and Hückel calculations, we show that this σ‐type overlapping is stabilized by a two‐orbital three‐electron interaction allowed by the high‐spin character of the Co2+ ions. The negligible experimental spin‐orbit coupling is expected from the resulting molecular orbital scheme in O3AsE–CoO4 clusters.  相似文献   

13.
The local structural environments of Bi3+ and dopant cations in the fluorite-structured solid solutions (M2O3)x(Bi2O3)1−x (M = Y, Er, Yb) have been studied using extended X-ray absorption fine structure techniques. The results show that the BiO shell is heavily disordered with an asymmetric radial distribution function. The Bi3+ ion tends to be displaced from its centrosymmetric, cube center site. The first coordination shell of the dopant is comparatively ordered. Varying the dopant cation has a small effect on the local structural environment and increasing the dopant concentration causes a small increase in the degree of local order. Data obtained over a range of temperatures show that the large anisotropy in the BiO shell is attributable to static displacements from the perfect lattice sites. The degree of correlation between the thermal vibrations of the anion sublattice and those of the Bi atoms differs from that observed between those of the anion sublattice and the dopant atoms; the significance of this for ionic conductivity is discussed.  相似文献   

14.
A novel compound, KBi(C6H4O7) · 3.5H2O (I), has been synthesized in the Bi(NO3)2-K3(HCit) system (HCit3? is an anion of citric acid C6H8O7) at a component ratio (n) of 8 in a water-glycerol mixture, and its crystal structure has been determined. The crystals are unstable in air. The crystals are triclinic: a = 7.462 Å, b = 10.064 Å, c = 17.582 Å, α = 100.27°, β = 99.31°, γ = 105.48°, V = 1221.2 Å3, Z = 2, space group $P\bar 1$ . In the structure of I, asymmetric binuclear fragments [Bi2(Cit4?)2(H2O)2]2? are linked through inversion centers into polymeric chain anions. Ions K+ and crystal water molecules are arranged in channels between the chains. The Bi(1)...Bi(2) distances in the binuclear fragment are 4.62 Å, and the Bi(1)...Bi(1) and Bi(2)...Bi(2) distances between bismuth atoms in the chain are 5.83 and 5.95 Å, respectively. The chains are linked through bridging oxygen atoms of the ligands Cit to form layers. In the centrosymmetric four-membered chelate ring Bi2O2 formed through Bi-O(Cit) bonds, the distances Bi(1)-Bi(1) are equal to 4.55 Å, and Bi(1)-O are 2.66 and 2.84 Å. The Bi-O bond lengths in I are in the range 2.12–3.16 Å. The Cit ligands act as hexadentate chelating/bridging ligands.  相似文献   

15.
A novel mixed valent tellurium oxide, SrTe3O8, has been synthesized and its crystal structure was determined ab initio from powder X-ray diffraction data. This oxide, which crystallizes in a tetragonal unit-cell, P42/m space group, with very close a and c cell parameters (6.8257(1) and 6.7603(1) Å, respectively), exhibits a very original structure built up of corner-sharing TeO6 (Te6+) octahedra and Te2O8 (Te4+) twin-pyramidal units. The latter ones form [Te3O8] chains running along the [001] and the [110] directions. Besides the four sided tunnels where the Sr2+ cations are located, there are very large four sided tunnels running along the c-axis which are obstructed by the electronic lone pairs of the Te4+ cations.  相似文献   

16.
Syntheses, Properties and Crystal Structures of the Cluster Salts Bi6[PtBi6Cl12] and Bi2/3[PtBi6Cl12] Melting reactions of Bi with Pt and BiCl3 yield shiny black, air insensitive crystals of the subchlorides Bi6[PtBi6Cl12] and Bi2/3[PtBi6Cl12]. Despite the substantial difference in the bismuth content the two compounds have almost the same pseudo‐cubic unit cell and follow the structural principle of a CsCl type cluster salt. Bi6[PtBi6Cl12] consists of cuboctahedral [PtBi6Cl12]2? clusters and Bi62+ polycations (a = 9.052(2) Å, α = 89.88(2)°, space group P 1, multiple twins). In the electron precise cluster anion, the Pt atom (18 electron count) centers an octahedron of Bi atoms whose edges are bridged by chlorine atoms. The Bi62+ cation, a nido cluster with 16 skeletal electrons, has the shape of a distorted octahedron with an opened edge. In Bi2/3[PtBi6Cl12] the anion charge is compensated by weakly coordinating Bi3+ cations which are distributed statistically over two crystallographic positions (a = 9.048(2) Å, α = 90.44(3)°, space group ). Bi6[PtBi6Cl12] is a semiconductor with a band gap of about 0.1 eV. The compound is diamagnetic at room temperature though a small paramagnetic contribution appears towards lower temperature.  相似文献   

17.
The paper presents a new data on the crystal structure, thermal expansion and IR spectra of Bi3B5O12. The Bi3B5O12 single crystals were grown from the melt of the same stoichiometry by Czochralski technique. The crystal structure of Bi3B5O12 was refined in anisotropic approximation using single-crystal X-ray diffraction data. It is orthorhombic, Pnma, a=6.530(4), b=7.726(5), c=18.578(5) Å, V=937.2(5) Å3, Z=4, R=3.45%. Bi3+ atoms have irregular coordination polyhedra, Bi(1)O6 (d(B-O)=2.09-2.75 Å) and Bi(2)O7 (d(B-O)=2.108-2.804 Å). Taking into account the shortest bonds only, these polyhedra are considered here as trigonal Bi(1)O3 (2.09-2.20 Å) and tetragonal Bi(2)O4 (2.108-2.331 Å) irregular pyramids with Bi atoms in the tops of both pyramids. The BiO4 polyhedra form zigzag chains along b-axis. These chains alternate with isolated anions [B2IVB3IIIO11]7− through the common oxygen atoms to form thick layers extended in ab plane. A perfect cleavage of the compound corresponds to these layers and an imperfect one is parallel to the Bi-O chains. The Bi3B5O12 thermal expansion is sharply anisotropic (α11α22=12, α33=3×10−6 °C−1) likely due to a straightening of the flexible zigzag chains along b-axis and decreasing of their zigzag along c-axis. Thus the properties like cleavage and thermal expansion correlate to these chains.  相似文献   

18.
A melting and glass recrystallization route was carried out to stabilize a new tetragonal form of Bi2SiO5 with bismuth partially substituted by lanthanum. The crystal structure of Bi2−xLaxSiO5 (x∼0.1) was determined from powder X-ray and neutron diffraction data (space group I4/mmm, , c=15.227(1) Å, V=224.18 Å3, Z=2; reliability factors: RBragg=5.65%, Rp=14.6%, Rwp=16.8%, Rexp=8.3%, χ2=8.3 (X-ray) and RBragg=2.40%, Rp=8.1%, Rwp=7.5%, Rexp=4.2%, χ2=3.3 (neutrons); 11 structural parameters refined).The main effect of lanthanum substitution is to introduce, by removing randomly some bismuth 6s2 lone pairs, a structural disorder in the surroundings of (Bi2O2)2+ layers, that is in the (SiO3)2− pyroxene files arrangement. It results in a symmetry increase relatively to the parent compound Bi2SiO5, which is orthorhombic. The two structures are compared.  相似文献   

19.
Bi53+ Polycations in Ordered and Plastic Crystals of Bi5[AlI4]3 and Bi5[AlBr4]3 Dark‐red air‐sensitive crystals of pentabismuth‐tris(tetrabromoaluminate) Bi5[AlBr4]3 and black crystals of Bi5[AlI4]3 have been crystallized from melts of Bi, BiX3 and AlX3 (X = Br, I). X‐ray diffraction on a single crystal of Bi5[AlI4]3 (T = 293(2) K; space group Pnma; a = 2143.6(3) pm, b = 1889.1(1) pm, c = 811.74(5) pm) revealed an ordered packing of Bi53+ trigonal bipyramids and [AlI4]? tetrahedra that corresponds to the PuBr3 structure type. Contrary to the so far known Bi53+ polycations with accurate D3h symmetry, the bismuth cluster found in Bi5[AlI4]3 holds only Cs symmetry. The room temperature structure of the tetrabromoaluminate Bi5[AlBr4]3, which is related to the AuCu3 type, shows a dynamic disorder of the Bi53+ polycations (T = 293(2) K; space group ; a = 1766.2(3) pm). Slight cooling induces the transition into an ordered rhombohedral phase isostructural to Bi5[AlCl4]3 (T = 260(2) K; space group a = 1241.5(8) pm, c = 3041(2) pm).  相似文献   

20.
A new one-dimensional tellurite phosphate, Ba2TeO(PO4)2 has been synthesized by standard solid-state reaction techniques using BaCO3, TeO2, and (NH4)H2PO4 as reagents. The structure of Ba2TeO(PO4)2 was determined by single-crystal X-ray diffraction. Ba2TeO(PO4)2 crystallizes in the triclinic space group P-1 (No. 2), with , , , α=76.843(4)°, β=79.933(4)°, γ=75.688(4)°, , and Z=2. Ba2TeO(PO4)2 has a novel one-dimensional chain structure that is composed of PO4 tetrahedra and TeO5 polyhedra. Te4+ cations are in asymmetric coordination environments attributable to their lone pairs. The lone pairs on the Te4+ cations point in the [100] and [−100] direction and interact with the Ba2+ cations. Infrared, Raman, and UV-Vis diffuse reflectance spectroscopy, thermogravimetric analysis, and dipole moment calculations are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号