首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ultrasonic, magnetic and transport properties of Nd0.5Ca0.5Mn1-xAlxO3 (x=0, 0.03) were studied from 15 to 300 K. The temperature dependencies of resistivity and magnetization show that Nd0.5Ca0.5Mn1-xAlxO3 undergoes a charge ordering transition at TCO?257 K. An obvious softening of the longitudinal sound ve- locity above TCO and a dramatic stiffening below TCO accompanied by an attenuation peak were observed. These features imply a strong electron-phonon interaction via the Jahn-Teller effect in the sample. Another broad attenuation peak was observed at around Tp?80 K. This anomaly is attributed to the phase separa- tion between the antiferromagnetic (AFM) and paramagnetic (PM) phases and gives a direct evidence for spin-phonon coupling in the compound. For the x=0.03 sample, both the minimum of sound velocity and attenuation peaks shift to a lower temperature. The results indicate that the charge ordering and CE-type AFM state in Nd0.5Ca0.5Mn1-xAlxO3 are both partially suppressed by replacing Mn with Al.  相似文献   

2.
采用柠檬酸溶胶-凝胶结合放电等离子烧结方法制备了p型Ca位掺杂的Ca2.9M0.1Co4O9(M=Ag, La, Ba)复合氧化物块体试样, 对其进行X 射线衍射(XRD)分析, 表明产物为单一物相, Ca位掺杂原子可以改变Ca2.9Co4O9多晶体的取向度, 掺杂试样取向度随着掺杂原子电负性的降低而提高|对其进行扫描电子显微镜(SEM)分析结果表明, 试样呈层状结构, 且层状结构随掺杂原子电负性降低而逐渐明显; 电性能分析结果表明, 测试温度范围内掺杂试样各温度点的电阻率随着掺杂原子电负性的降低而升高, 所有试样的载流子传输层未受影响, 导电机理未发生变化. 其中掺杂电负性最高的Ag原子的烧结体保持最低取向度的同时具有最低的电阻率, 在973 K时达6.87 mΩ·cm, 而掺杂电负性最低的Ba原子的烧结体具有高的取向度的同时具有较高的电阻率, 在973 K时达8.22 mΩ·cm.  相似文献   

3.
A new family of cyanide-based spin-crossover polymers with the general formula {Fe(5-Br-pmd)z[M(CN)x]y} [M=AgI (1), AuI (2), NiII (3), PdII (4), PtII (5); 5-Br-pmd=5-bromopyrimidine; z=1 or 2, x=2 or 4, and y=2 or 1] have been synthesized and characterized using single-crystal X-ray diffraction (XRD), X-ray powder diffraction (XRPD), magnetic susceptibility measurements, and differential scanning calorimetry (DSC). At 293 K, compound 1 presents the monoclinic space group C2/c, whereas at 120 K, it changes to the monoclinic space group P21/c. At 293 K, the crystal structure of 1 displays an uninodal three-dimensional network whose nodes, constituted of FeII, lie at the inversion center of an elongated octahedron. The equatorial bond lengths are defined by the N atoms of four [AgI(CN)2]- groups belonging to two crystallographically nonequivalent AgI atoms, Ag(1) and Ag(2). They are shorter than those of the axial positions occupied by the N atoms of the 5-Br-pmd ligands. The Fe-N average bond length of 2.1657(7) A is consistent with a high-spin (HS) state for the FeII ions. At 120 K, the crystal structure changes refer mainly to the FeII environment. There are two crystallographically independent FeII ions at this temperature, Fe(1) and Fe(2), which adopt the HS and low-spin (LS) states, respectively. The average Fe-N bond length for Fe(1) [2.174(5) A] and Fe(2) [1.955(5) A] agrees well with the reported magnetic data at this temperature. The spin transition of the FeII ions labeled as Fe(1) is found to be centered at Tc downward arrow=149 K and Tc upward arrow=167 K and accompanied by a drastic change of color from orange (HS) to red (LS). Magnetic susceptibility measurements under applied hydrostatic pressure performed on 1 have shown a linear displacement of the transition to higher temperatures while the hysteresis width remains unaltered in the interval of pressures of 105 Pa to 0.34 GPa. A further increase of the pressure induces the spin transition in the Fe(2) ions, which is completely accomplished at 1.12 GPa (T1/2=162 K). Compounds 1 and 2 are isostructural, but 2 does not exhibit spin-transition properties; the FeII centers remain in the HS state in the temperature range investigated, 5-300 K. Compounds 3-5 are not similar or isostructural with 1. A two-dimensional structure for 3-5 has been proposed on the basis of analytical data and the XRPD patterns. Compounds 3-5 undergo first-order spin transition where the critical temperatures for the cooling (Tc downward arrow) and warming (Tc upward arrow) modes are 170 and 180 K (3), 204 and 214 K (4), and 197 and 223 K (5), respectively. It is worth mentioning the color change from yellow to orange observed in 3-5 upon spin transition. The thermodynamic parameters associated with the spin transition estimated from DSC measurements are DeltaH=6 kJ mol(-1) (1), 11 kJ mol(-1) (3), 16 kJ mol(-1) (4), and 16 kJ mol(-1) (5) and DeltaS=38 J K(-1) mol(-1) (1), 62 J K(-1) mol(-1) (3), 76 J K-1 mol(-1) (4), and 81 J K(-1) mol(-1) (5).  相似文献   

4.
The IR and Raman spectra of [(CH3)3NH]3Sb2Cl9 (A), [(CH3)3NH]3Bi2Cl9 (B) and two of their mixed crystals containing respectively 33% (AB.33) and 42% Bi (AB.42) are analyzed and compared. A and AB.33 show ferroelectric–paraelectric phase transition at 364 K and 344 K, respectively. AB.42 and B are paraelectric in the temperature range between 90 and 365 K. Most of the vibrational modes show continuous changes, with the temperature, in the IR frequencies or intensities with no soft mode behavior. However, characteristic ν(NHCl) and δ(NHCl) vibrations of weakly hydrogen-bonded species are only observed in A and AB.33 below the temperature of the phase transition and are related to the ferroelectricity. The evolution of the IR spectra with the temperature suggests that the ferroelectric properties are connected with the reorientation of the cations which needs a breaking of the weak NHCl hydrogen bonds in the paraelectric phase.  相似文献   

5.
The preparation of crystalline CaCrO3 and some of its magnetic and electrical properties are reported. The electrical resistivity is metal like. The high-temperature susceptibility is Curie-Weiss paramagnetic with θ = −920°K, indicative of antiferromagnetic interactions; a break in the susceptibility at about 325°K suggests antiferromagnetic ordering at that temperature. A first-order transition occurs at 90°K accompanied by the appearance of a very small ferromagnetic moment and a discontinuity in the resistivity. X-ray data indicate that this is an 0-orthorhombic → 0′-orthorhombic crystallographic transformation. The low temperature state is probably a canted antiferromagnet.  相似文献   

6.
我们已制备出Tl_2 Ca Ba_2 Cu_2O_8(2122)和Tl_2Ca_2 Ba_2 Cu_3 O_(10)(2223)两个纯相,并对它们的晶体结构和性质进行了研究。现在我们又制备出一种新的超导相,它的组成为Tl_2 Ca_3 Ba_2 Cu_4 O_(120(2324),并进一步研究了它的超导性质和晶体结构。  相似文献   

7.
Ag-modified La0.6Sr0.4MnO3 catalysts were prepared and their catalytic performance for deep oxidation of CH4 and CH3OH at low concentrations were investigated. The results showed that the La0.6Sr0.4MnO3 host catalyst with the perovskite-type nano-crystallite structure displayed considerably high catalytic activity for deep oxidation of CH4 and CH3OH at low concentrations. Ag modification to the La0.6Sr0.4MnO3 host catalyst resulted in significant enhancement of the catalyst activity, making the T95 (the reaction temperature needed for conversion of 95%of CH4 or CH3OH) lowered down to 735K (for CH4) and 421K (for CH3OH) from 813 and 465 K over the Ag-free system under the reaction conditions:0.1MPa,CH4/O2/N2=2/12/86(molar ratio),GHSV=45000 h-1 and CH3OH/O2/N2= 0.2/1.0/98.8 (molar ratio),GHSV=58000 h-1,respectively.The carbon containing product was almost CO2 and the contents of HCHO and CO in the reaction exit gas were both under GC detectable limit in both cases.
The results of spectroscopic characterization indicated that modification by proper amount of Ag-dopant did not change the perovskite structure of the La0.6Sr0.4MnO3 host catalyst as a whole. Interaction of Ag-dopant with the surface of the host catalyst,La0.6Sr0.4MnO3,was in favor of high dispersion of the Ag component at the catalyst surface and led to the oxidation of part of the Mn3+species to Mn4+,resulting in an increase of amounts of the reducible Mnn+ species and a decrease of their reduction temperature. On the other hand, this interaction led also to enhancement of adsorption ability of the catalyst toward O2 at relatively low temperature. High activity of the Ag modified La0.6Sr0.4MnO3 catalyst for CH4 and CH3OH complete oxidation was closely related to high redox-activity of the catalyst and its prominent adsorption-activation ability to O2 at relatively low temperatures.  相似文献   

8.
利用精密绝热热量仪测定了化合物配合物Zn(Met)3(NO3)2·H2O (s) (Met=L-α-蛋氨酸)在78-371 K温区的摩尔热容. 通过热容曲线解析, 得到了该配合物的起始脱水温度为TD=325.10 K. 将该温区的摩尔热容实验值用最小二乘法拟合得到了摩尔热容(Cp)对约化温度(T)的多项式方程, 由此计算得到了配合物的舒平热容值和热力学函数值. 基于设计的热化学循环, 选择100 mL of 2 mol·L-1 HCl为量热溶剂, 利用等温环境溶解-反应热量计, 得到了298.15 K配合物的标准摩尔生成焓为ΔfHm0[Zn(Met)3(NO3)2·H2O(s),s]=-(1472.65±0.76) J·mol-1.  相似文献   

9.
The electrical resistivity of (La1?xCax)CoO3 (0.1 ≦ x ≦ 0.5) was measured in the temperature range from 80 to 300K. Cobaltite with x ≦ 0.15 is a semiconductor, but the specimen with chemical composition 0.2 ≦ x ≦ 0.5 is metallic. The change of temperature dependence of electrical resistivity has a break point around Tc. The value of the logarithm of the specific electrical resistivity (log ?) at 300K has a minimum at x = 0.4, and this result is explained by the Zener double-exchange mechanism.  相似文献   

10.
采用溶胶-凝胶法制备了Fe3+掺杂的Fe-K2La2Ti3O10光催化剂, 并通过X射线衍射(XRD)、紫外-可见漫反射(DRS)、X射线光电子能谱(XPS)等技术对其进行了表征和分析, 考察了不同掺杂量对K2La2Ti3O10的性质及光催化分解水制氢活性的影响. 结果表明, Fe-K2La2Ti3O10在400-650 nm范围内显示强吸收, 光谱响应扩展到可见光区(λ>400 nm), 掺杂Fe3+后, K2La2Ti3O10的可见光区的光催化制氢活性显著提高, 掺杂量为nFe/nTi=0.04时活性最佳, 当催化剂用量为0.1 g, 反应液为CH3OH(30 mL)+H2O(90 mL)时, 产氢量达到1.92 μmol·h-1, 为未掺杂时的4倍.  相似文献   

11.
The Ln0.67Sr0.33Fe.Mn1-xO3(LSFMO)(0.05< x <0.33) systems have been synthesized by co-precipitation. The X-ray diffraction patterns indicates that these compounds are of single phase with rhombohedral structure. The resistivity of samples was measured in zero field and applied field (H=4000Oe) by a standard four-probe method. Large magnetoresistance (MR) was found in all samples. There is a resistivity transition peak in LSFMO (x ≦0.13) in which MR negative, the temperature (TP) at which the resistivity peak occurs decreases with the increasing of x. LSFMO (x=0.23) to which the large negative MR is still found is a semiconductor, It is unexpected that a peculiar alternative positive negative MR was found in LSFMO(x=0.33) which also is a semicondutor.  相似文献   

12.
Cu@Ag/Bi2Te3 nanocomposites were prepared for the first time by ultrasonic dispersion-rapid freezedrying method combined with spark plasma sintering(SPS).By changing the content of Cu@Ag nanoparticle,we could modulate the temperature dependent thermoelectric properties.The highest ZT value can be obtained at 450 K for 1 vol%Cu@Ag/Bi2Te3,which is benefited from the decoupling of electrical and thermal properties.With the increase of electrical conductivity,the absolute value of Seebeck coefficient lifts while the thermal conductivity declines.Meanwhile,the average ZT value between 300 K and 475 K was 0.61 for 1 vol%Cu@Ag/Bi2Te3,which is much higher than that of pristine Bi2 Te3.Therefore,the decoupling effect of Cu@Ag nanoparticles incorporation could be a promising method to broaden the application of Bi2Te3 based thermoelectric materials.  相似文献   

13.
Single crystals of the quaternary compound Ba8Cu3In4N5 were prepared by heating Ba, Cu, and In in a Na flux at 1023 K under 7 MPa of N2, and by slow cooling from this temperature. The crystal structure was analyzed by single-crystal X-ray diffraction. It crystallizes in an orthorhombic cell (space group Immm (No. 71), Z=2) with a=4.0781(6), b=12.588(2), and c=19.804(3) Å at 298 K. The structural formula is expressed as Ba8[CuN2]2 [CuN]In4. Nitridocuprates of one-dimensional chains 1[CuN2/2] and isolated units 0[CuN2], and one-dimensional indium clusters 1[In2In4/2] are contained in the structure. A split-site model applied for the arrangement of 1[CuN2/2] chains suggested that there is a short-bond, long-bond alternation of the Cu-N bondings. The electrical resistivity of Ba8Cu3In4N5 was 3.44 mΩ·cm at 298 K. A metallic temperature dependence of the resistivity was observed down to 10 K.  相似文献   

14.
Polycrystalline samples of strontium series perovskite type oxides, SrHfO3 and SrRuO3 were prepared and the thermophysical properties were measured. The average linear thermal expansion coefficients are 1.13×10−5 K−1 for SrHfO3 and 1.03×10−5 K−1 for SrRuO3 in the temperature range between 423 and 1073 K. The melting temperatures Tm of SrHfO3 and SrRuO3 are 3200 and 2575 K, respectively. The longitudinal and shear sound velocities were measured by an ultrasonic pulse-echo method at room temperature in air, which enables to evaluate the elastic moduli and Debye temperature. The heat capacity was measured by using a differential scanning calorimeter, DSC in high-purity argon atmosphere. The thermal diffusivity was measured by a laser flash method in vacuum. The thermal conductivities of SrHfO3 and SrRuO3 at room temperature are 5.20 and 5.97 W m−1 K−1, respectively.  相似文献   

15.
Large samples (6-8 g) of Yb11Sb10 and Ca11Sb10 have been synthesized using a high-temperature (1275-1375 K) flux method. These compounds are isostructural to Ho11Ge10, crystallizing in the body-centered, tetragonal unit cell, space group I4/mmm, with Z=4. The structure consists of antimony dumbbells and squares, reminiscent of Zn4Sb3 and filled Skutterudite (e.g., LaFe4Sb12) structures. In addition, these structures can be considered Zintl compounds; valence precise semiconductors with ionic contributions to the bonding. Differential scanning calorimetry (DSC), thermogravimetry (TG), resistivity (ρ), Seebeck coefficient (α), thermal conductivity (κ), and thermoelectric figure of merit (zT) from room temperature to at minimum 975 K are presented for A11Sb10 (A=Yb, Ca). DSC/TG were measured to 1400 K and reveal the stability of these compounds to ∼1200 K. Both A11Sb10 (A=Yb, Ca) materials exhibit remarkably low lattice thermal conductivity (∼10 mW/cm K for both Yb11Sb10 and Ca11Sb10) that can be attributed to the complex crystal structure. Yb11Sb10 is a poor metal with relatively low resistivity (1.4 mΩ cm at 300 K), while Ca11Sb10 is a semiconductor suggesting that a gradual metal-insulator transition may be possible from a Ca11−xYbxSb10 solid solution. The low values and the temperature dependence of the Seebeck coefficients for both compounds suggest that bipolar conduction produces a compensated Seebeck coefficient and consequently a low zT.  相似文献   

16.
CsVI3 (a = 8.124(1) c = 6.774(1)Å,Z = 2, P63/mmc at 293 K) adopts the BaNiO3 structure. Three-dimensional magnetic ordering takes place atTc = 32(1)K. At 1.2 K the magnetic moment is 1.64(5) μB and it forms a 120° spin structure in the basal plane. RbVI3 (a = 13.863(2) c = 6.807(1) Å,Z = 6, P63cmor Pc1 at 293 K) and RbTiI3 (a = 14.024(3) Å,c = 6.796(2) Å,Z = 6, P63cm orPc1 at 293 K) adopt a distorted BaNiO3 structure, probably isostructural with KNiCl3.Tc of RbVI3 is 25(1) K. At 1.2 K, RbVI3 has a spin structure similar to the one of CsVI3 with a magnetic moment of 1.44(6) μB. RbTiI3 shows no magnetic ordering at 4.2 K. It is shown that a deviation from the 120° structure is expected for compounds with a distorted BaNiO3 structure such as RbVI3. The cell dimensions of CsTiI3 are reported.  相似文献   

17.
The compound Be1.09B3 was prepared by arc-melting of the elemental constituents. The structure of single crystals taken from the arc-melted boule was determined from single-crystal X-ray data (T=120 K) and is hexagonal, having space group P6/mmm, and lattice parameters a=9.7738(7) Å and c=9.5467(6) Å, R=0.047. The structure consists of a hexagonal array of boronicosahedra, nonicosahedral B12 cages, and B18 cages. Stacked hexagonal layers of boron atoms, hexagons formed by B and Be, and equilateral triangles of boron atoms disordered by a 60° rotation exist along a 6-fold axis down the [001] direction. A superconducting transition at 0.72 K is clearly indicated by resistivity measurements.  相似文献   

18.
The superconducting phase(Bi_(1.7)Pb_(0.2)In_(0.1))Sr_2Ca_2Cu_3O_(10) with on-set T_c near 112K and zero resistivity at 95K has been prepared. The Unit cell is. body-centered tetragonal, space group I4/mmm, a=0.3.817(1) nm, c=3.704(1) nm. Chemical substitution of Pb and In in Bi—Sr—Ca—Cu—O series results in the growth of 2223 phase. The superconductivity and the formation mechanism are associated with the structural features.  相似文献   

19.
在G3XMP2//B3LYP/6-311+G(3df,2p)水平上对CH3SO3裂解反应的机理进行了研究, 获得了6 条通道(10 条路径), 并构建了其势能剖面. 同时采用单分子反应理论计算了各个通道在温度200-3000 K区间的速率常数. 研究结果表明, 在计算温度范围内, CH3SO3裂解反应的主产物为P1(CH3+SO3), 产物P2(CH3O+SO2)和P3(HCHO+HOSO)仅在温度大于3000 K时对总产物有贡献, 而产物P4(CHSO2+H2O), P5(CH2SO3+H)和P6(CHSO3+H2)贡献相对较少. 将裂解反应总的速率常数拟合为ktotal=1.40×1012T0.15exp(7831.58/T). 此外, 根据统计热力学原理, 预测了所有物种的生成焓(DfHΘ298 K, DfH0 K), 熵(SΘ298 K)和热容(Cp, 298-2000 K), 计算的结果与实验值较接近.  相似文献   

20.
Ca3Al2Ge3O12:Cr3+的光谱性质及晶场参数计算   总被引:1,自引:0,他引:1  
为了解Cr3+离子在钙铝锗酸盐Ca3Al2Ge3O12:石榴石中的光谱性质, 合成了Ca3Al2Ge3O12:Cr3+多晶材料;测量了其X射线衍射图, 漫反射光谱, 激发、发射光谱等;分析了Cr3+离子在钙铝锗酸盐中的发光特性;计算了其晶场强度(Dq/B), Stokes位移(ΔEs)及黄昆-里斯因子(S)等. 在450 nm激发下, Ca3Al2Ge3O12:Cr3+室温发射光谱主要由三个宽带及附加其上的弱R线构成, 分别对应于Cr3+离子的4T1、 4T2、2T2到 4A2 能级跃迁. 低温时R线变得强而锐. 通过计算, Dq/B=2.43, ΔEs=1884 cm-1, S=5.21. 表明在Ca3Al2Ge3O12中Cr3+离子处于较弱的晶场强度, 电子-声子耦合较强, 为发展可调谐激光材料提供重要线索.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号