首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Particle stabilized thin films occur in a range of industrial applications where their properties affect the efficiency of the process concerned. However, due to their dynamic and unstable nature they are difficult to observe experimentally. As such, a tractable way of gaining insight into the fundamental aspects of this complicated system is to use computer simulations of particles at interfaces. This paper presents modeling results of the effect of nonuniform packing of spherical particles on the stability of thin liquid films. Surface Evolver was used to model cells containing up to 20 particles, randomly packed in a thin liquid film. The capillary pressure required to rupture the film for a specific combination of particle arrangement, packing density, and contact angle was identified. The data from the periodic, randomly packed models has been used to find a relationship between particle packing density, contact angle, and critical capillary pressure which is refined to a simple equation that depends on the film loading and contact angle of the particles it contains. The critical capillary pressure for film rupture obeys the same trends observed for particles in regular 2D and 3D packing arrangements. The absolute values of P*(crit), however, are consistently lower than those for regular packing. This is due to the irregular arrangement of the particles, which allows for larger areas of free film to exist, lowering the critical capillary pressure required to rupture the film.  相似文献   

2.
Commingled plant and polypropylene fibres (PP) nonwovens are attractive for automotive industry because of their interesting mechanical performances combined with good acoustical properties. This double function is achieved thanks of controlled porosity within the composite material. Indeed, from a same material, different functions (acoustic or mechanical) can be obtained by only varying the compaction rate during moulding. This study aims to highlight the necessity of a very large porosity volume fraction (60%) to reach good acoustic properties and understand the mechanical effect behind it. By combining tensile testing, acoustic absorption measurement and scanning electron imaging analysis, the microstructure, acoustic and mechanical properties have been investigated and were found to be intimately related to the material porosity content. As expected, when increasing porosity level from 5 to 60%, the material behaviour change and its tensile properties (modulus, strength and elasticity domain) drop drastically to a point where the material is no longer elastic (70% porosity) due to a modification of the material microstructure involving different failure mechanisms.  相似文献   

3.
介绍了PBO(聚对苯撑苯并双噁唑)纤维的结构与性能,并针对该纤维作为复合材料增强体与树脂界面粘结性差的特点,评述了PBO纤维表面改性技术中的化学法、共聚改性、偶联剂处理、等离子处理、电晕处理和辐射处理法的研究进展,并比较了各种方法的改性效果及各自优缺点。  相似文献   

4.
Summary A general procedure is presented for predicting the minimum analysis time required to achieve a given chromatographic separation. By combining equations relating the residence time, resolution, and gas flow characteristics of a column, a direct computational procedure is evolved for determining the minimising values of: the inlet to outlet pressure ratio, the column length and the linear gas velocity. This technique is then utilised to discuss the relative sensitivity of the solution to the values of the terms , , C g , C L , and D and hence to determine their optimal settings with respect to the characteristic properties of the system. In particular, the feasibility of fast analyses (<6 sec) within the accessible limits of these parameters is explored, together with a quantitative assessment of the influence of the liquid loading, carrier-gas type and support particle size. The condition when permeability requirements demand a compromise between these factors is identified in terms of the expected flowrate restrictions.  相似文献   

5.
An alternative method to determine the interstitial void volume and the external porosity inside a packed or a monolithic column was developed. The method is based on the total blocking of the mesopores of a porous support by filling them with a hydrophobic solvent. The strong interaction of the latter with the hydrophobic coating inside the pores keeps the solvent in position during the subsequent measurements. With the pores of the stationary phase material completely inaccessible for any type of polar molecules, the method allows to perform interstitial void measurements using small molecular weight (MW) molecules instead of the large MW molecules that need to be used in inverse size exclusion chromatography (ISEC). These small MW molecules are able to penetrate every corner of the interstitial volume and therefore lead to a very accurate determination of the external porosity. Since only one type of molecules needs to be injected, the often troublesome regression analysis needed in ISEC is omitted as well. In the present contribution, the method has been applied to a packed bed and a monolithic column to investigate the optimal conditions of flow velocity, liquid compositions, and unretained marker selection. The robustness and the repeatability of the method are discussed as well.  相似文献   

6.
Fibers consisting of a rigid rod polymer and thermoset resin matrices were prepared. Poly(benzo-[1,2-d : 5,4-d′]bisoxazole-2,6-diyl)-1,4-phenylene} (PBO) in polyphosphoric acid (PPA) was blended with isophthaloyl bis-4-benzocyclobutene (1) or 2,6-bis-4-benzocyclobutene benzo[1,2-d: 5,4-d′]bisoxazole (2), and fibers were spun from these dopes. As-spun fibers that did not show phase segregation between the two components as examined with an optical microscope, were soluble in methanesulfonic acid (MSA). After heat treat-ment, the fibers swelled but did not dissolve in MSA. A fiber cross section of heat-treated PBO-1 fiber showed well-dispersed benzocyclobutene polymer domains of 200–500 Å by transmission electron microscopy (TEM). Films cast from MSA solutions of PBO and 2 were homogeneous, and TEM of heat-treated fiber showed only one phase. A molecular composite fiber was made. Some of these fibers showed 20–30% improvement in compressive strength over unmodified PBO fiber. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
Stress concentration and weak interfacial strength affect the mechanical properties of short carbon fibers (CFs) reinforced polymer composites. In this work, the cauliflower-like short carbon fibers (CCFs) were prepared and the point was to illuminate the effects of fiber morphology on the mechanical properties of the CCFs/rigid polyurethane (RPU) composites. The results indicated that the surface structure of CCFs could increase the surface roughness of the fibers and the contact area between fibers and matrix, thereby promoting the formation of irregular interface. Compared with pure RPU and initial CFs/RPU composites, the strength and toughness of CCFs/RPU composites were simultaneously improved. The satisfactory performance was attributed to the special fibers structure, which played an anchoring role and consumed more energy during crack propagation.  相似文献   

8.
The effects of acoustic wave propagation on the transport of colloids in saturated porous media were investigated by injecting Uranine (conservative tracer) as well as blue and red polystyrene microspheres (colloids of different diameters; 0.10 and 0.028 mum, respectively) into a column packed with glass beads. Experiments were conducted by maintaining the acoustic pressure at the influent at 23.0 kPa with acoustic frequencies ranging from 30 to 150 Hz. The experimental results suggested that colloid size did not affect the forward and reverse attachment rate coefficients. The acoustic pressure caused an increase in the effective interstitial velocity at all frequencies for the conservative tracer and colloids of both sizes, with maximum increase at 30 Hz. Furthermore, acoustics enhanced the dispersion process at all frequencies, with a maximum at 30 Hz.  相似文献   

9.
A set of silica particles was synthesized in oil–in–water emulsion with particle diameters ranging from ~42?nm to ~115?nm approximately. The porosity of the nanoparticles was analyzed using conventional nitrogen sorption and positron annihilation lifetime spectroscopy (PALS) techniques. The isotherm obtained using nitrogen sorption indicated that the particles were ‘non-porous?? however fitting data with Density Functional Theory model revealed a low concentration pore with diameters from 1.4?nm to 1.7?nm. The pore size was independent of the particle size. In contrast, analysis with PALS revealed a single pore size of ~0.6?nm present in all samples. Difference in results obtained for micropores <4?nm diameter is proposed to be dependent on models used and sample conditions for analysis.  相似文献   

10.
This paper presents the results of a stochastic analysis of the distances between clusters randomly distributed on a flat surface. The probability distribution functions of the distances between first, second, third and nth neighbour clusters are derived. The theoretical formulae obtained are compared with experimental distributions of the distances between mercury droplets electrochemically deposited on a platinum electrode.  相似文献   

11.
Two types of commercial glass fibers were subjected to attack in strongly basic KOH solutions. The resulting leach solutions were analysed for Na, Ca, and Si. This showed that the corrosion process attacks the fibers incongruently. Although there are some distinct differences in the performance of these fibers, to a first approximation both types behave similarly. Further, the fibers were depth profiled using a recently developed SNMS technique for fiber in-depth analysis. This showed that both types of fibers behave in a quite dissimilar manner. The fibers were weathered already without any treatment. Although both fibers show alkali ion exchange and network splitting processes, on one of the fiber layers enriched in SiO2, Fe2O3, and CaO are formed by a redeposition process from the leach solution.Dedicated to Professor Dr. rer. nat. Dr. h.c. Hubertus Nickel on the occasion of his 65th birthday  相似文献   

12.
《European Polymer Journal》2013,49(6):1682-1687
We synthesized a fully rigid, water soluble discotic-shaped aromatic aramid molecule, which can spontaneously self-assemble into multiscale fibers (from nano- to micro-scale in both length and diameter), depending on the molecular states (e.g., solution, liquid crystals and solid state). In diluted solution (below 0.086 g/mL), the discotic molecule tend to self-assemble into nanofibers. As the concentration increased (0.086–0.28 g/mL), it exhibits supramolecular liquid crystalline phase with microfiber texture. While, solid power under circumstance with 83% relative humidity favors the formation of rod-like shaped polymorphic crystals in macroscopic size. The unique ‘self-fiber-forming’ property of discotic molecules in different states makes them become an easy processing aramid fiber material, and also allow us to easily prepare microfilm with parallel-aligned nanofibers, which could be a promising candidate for ion conductivity material such as polymer proton exchange membrane (PEM) for fuel cell.  相似文献   

13.
Brownian dynamics simulations of the behavior of suspensions of fibers demonstrate that the scaling of the rotational diffusivity with respect to the number density (nL3) is a sensitive function of the thickness and the parameter L2D(R0)/D(T0), where D(R0) is the rotational diffusivity at infinite dilution, D(T0) is the average center-of-mass diffusivity at infinite dilution, and L is the fiber length. Existing theories for the long-time rotational diffusivities of rigid fibers in the semidilute and concentrated regimes fail to accurately account for the relationship with the dilute values of the rotational and translational diffusivities of the various physical models used to simulate the fibers. The concentration regime studied in this work ranges from a number density of nL3 approximately 0-150, which is below the transition from an isotropic to nematic state. The effect of the fiber thickness was studied by performing simulations of rods with aspect ratios (fiber length over diameter) of 25, 50, and 500, as well as performing projections for infinitely thin fibers. The excluded volume of the rods was enforced through the use of short-range potentials. For a rod with an aspect ratio of 50 with a parameter of L2D(R0)/D(T0)=9, which corresponds to a slender-body model of the individual fibers, the rotational diffusivity (D(R)) scales as D(R)/D(R0) approximately (nL3)(-1.9) in the concentration regime of 70 < or = nL3 < or = 150. Similarly with a parameter of L2D(R0)/D(T0)=4, corresponding to a rigid-dumbbell model, the rotational diffusivity scales as D(R)/D(R0) approximately (nL3)(-1.1) over the same range of concentrations. For rods with aspect ratios of 25, it is observed that a difference in the scaling is seen for L2D(R0)/D(T0) approximately < 8, with higher values of this ratio exhibiting essentially the same scaling. Additional values of the ratio L2D(R0)/D(T0) were investigated to determine the overall behavior of the suspension dynamics with respect to this parameter. These findings resolve discrepancies between simulation results for rotational diffusivities reported by previous investigators and provide new insights for the development of an accurate theory for the diffusivity of rigid rods suspended in solution.  相似文献   

14.
15.
16.
In this article, short carbon fibers (CFs) reinforced rigid polyurethane (RPU) composites were prepared with the aim of improving both strength and toughness. A tannic acid (TA)‐nickel (Ni) composite coating was spontaneously co‐deposited onto CFs surface by a one‐step electrodeposition method to strengthen the interface bonding of the composites. The satisfactory mechanical properties of the composites were mainly attributed to the superior interfacial adhesion. On the one hand, TA could play a role in refining Ni grain during electrodeposition. On the other hand, the hydroxyl groups attached to composite coating, which were introduced by TA, could react with the RPU matrix to form chemical bonds. When the composites were under stress, the chemical bonds could effectively transfer the stress from matrix to the interface, while the refined Ni crystals could greatly increase the stress transfer path, and thus improve the strength and toughness of the material. Compared with pure RPU, the tensile strength, bending strength,interlaminar shear strength, and impact strength of TA‐Ni‐coated CFs/RPU composites were improved by 14.8%, 83.1%, 28.7%, and 121.4%, respectively.  相似文献   

17.
《先进技术聚合物》2018,29(2):843-851
The mechanical properties of ultrahigh molecular weight polyethylene (UHMWPE) fibers reinforced rigid polyurethane (PU) composites were studied, and the effects of the fiber surface treatment and the mass fraction were discussed. Chromic acid was used to treat the UHMWPE fibers, and polyurethane composites were prepared with 0.1 to 0.6 wt% as‐received and treated UHMWPE fibers. Attenuated total reflection Fourier transform infrared demonstrated that oxygen‐containing functional groups were efficiently grafted to the fiber surface. The mechanical performance tests of the UHMWPE fibers/PU composites were conducted, and the results revealed that the treated UHMWPE fibers/PU composites had better tensile, compression, and bending properties than as‐received UHMWPE fibers/PU composites. Thermal gravimetric analyzer showed that the thermal stability of the treated fiber composites were improved. The interface bonding of PU composites were investigated by scanning electron microscopy and dynamic mechanical analysis, and the results indicated that the surface modification of UHMWPE fiber could improve the interaction between fiber and PU, which played a positive role in mechanical properties of composites.  相似文献   

18.
The thermal treatment of coal causes a development of internal porosity of the resultant char due to the changes in the coal char pores, i.e. the opening of original closed pores, the formation of new pores, and an increase in pore size of existing and newly formed pores. Furthermore, the porosity formed during de-volatilisation causes changes in pore structural characteristics such as: density, pore size distribution, total open pore volume, porosities and average pore diameter. Much research has been conducted in this area, but was mainly focused on fine particle sizes (<1 mm) and vitrinite-rich coals, particularly from the Northern hemisphere. The objective of this study was to obtain an understanding of both the macro- and micro-porosity development within the de-volatilisation zone of a packed bed consisting of lump inertinite-rich coal (75 mm × 6 mm) from the Highveld coalfield in South Africa. This was achieved by generating samples in an air-blown packed bed reactor and conducting proximate, CO2 reactivity, mercury intrusion porosimetry, and BET CO2 surface area analyses on the dissected coal/char/ash samples.From mercury-intrusion porosimetry results obtained for the de-volatilisation reaction zone of the reactor, it was found that although the percentage macro-porosity and average pore diameter increased by 11% and 77% respectively (which confirms pore development), that these developments do not enlarge the surface area, and thus has no significant contribution on the reactivity of the coal/char. On the other hand, the micro-pore surface area, pore volume and pore diameter were all found to increase during de-volatilisation, resulting in an increase in the coal char reactivity. The micro-porosity is thus generally responsible for the largest internal surface area during de-volatilisation, which enables increased reactivity. The CO2 gasification reactivity (at 1000 °C) increased from 3.8 to 4.5 h−1 in the first stage of de-volatilisation, and then decreased to 3.8 h−1 in a slower de-volatilisation regime. This is due to the maximum pore expansion and volatile matter evolution reached at 4.5 h−1, before coalescence and pore shrinkage occur with a further increase in temperature within the slower de-volatilisation region of the reactor. During de-volatilisation there is thus both an increase and decrease in reactivity which might suggest two distinct intermediate zones within the de-volatilisation zone.  相似文献   

19.
A rapid, specific, and sensitive method has been developed using molecularly imprinted polymers (MIPs) as solid-phase extraction sorbents for extraction of trace tetracycline antibiotics (TCs) in foodstuffs. MIPs were prepared by precipitation polymerization using tetracycline as the template. Under the optimal condition, the imprinting factors for MIPs were 4.1 (oxytetracycline), 7.0 (tetracycline), 7.4 (chlortetracycline), 7.7 (doxycycline), respectively. Furthermore, the performance of MIPs as solid-phase extraction sorbents was evaluated and high extraction efficiency of molecularly imprinted solid-phase extraction (MISPE) procedure was demonstrated. Compared with commercial sorbents, MISPE gave a better cleanup efficiency than C18 cartridge and a higher recovery than Oasis HLB cartridge. Finally, the method of liquid chromatography–tandem mass spectrometry coupled with molecular-imprinted solid-phase extraction was validated in real samples including lobster, duck, honey, and egg. The spiked recoveries of TCs ranged from 94.51% to 103.0%. The limits of detection were in the range of 0.1–0.3 μg kg−1. Chromatograms obtained by direct injection of the spiked egg extracts (5 × 10-3 mmol L−1) and purification with MISPE  相似文献   

20.
This work examines the influence of the amount of silver nanoparticles added to polyacrylonitrile spinning solutions on their rheological properties as well as the structure and properties of the fibers produced. The influence of the amount of silver nanoparticles on the supramolecular structure of nanocomposite polyacrylonitrile precursor fibers, their porosity, as well as thermal and tensile strength properties was determined. The distribution of the nano‐ additive in fiber cross‐sections and on the surface was estimated. It was found that the addition of silver nanoparticles to polyacrylonitrile precursor fibers in an amount of up to 1.5% does not cause a decrease in the susceptibility of the fiber matter to deformation at the drawing stage. The produced fibers were characterized by an increased total volume of pores of 0.35 cm3/g and tenacity of more than 34 cN/tex. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号