首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hongmei Jiang  Bin Hu 《Mikrochimica acta》2008,161(1-2):101-107
A new method of direct single-drop microextraction combined with electrothermal atomic absorption spectrometry (ETAAS) is presented for the determination of trace Cd and Pb with dithizone (H2DZ) as chelating reagent. Factors influencing the microextraction efficiency and determination, such as pH, microdrop volume, stirring rate, extraction time were evaluated. Under the optimized experimental conditions, the detection limits of the method are 2 and 90 pg mL−1 for Cd and Pb, and the relative standards deviations for 0.5 ng mL−1 Cd and 10 ng mL−1 Pb are 11 and 12.8%. After 10 min of extraction, the enrichment factors for Cd and Pb are 118 and 90, respectively. The results for the determination of Cd and Pb in tap water, spring water, river water, pond water, lake water and spiked water samples demonstrate the accuracy, recovery and applicability of the method. An environmental water certified reference material (GSBZ 50009-88) was analyzed, and the determined values are in a good agreement with the certified values. Correspondence: Bin Hu, Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China  相似文献   

2.
A simple and sensitive cloud point extraction method has been developed for the preconcentration of ultra-trace amounts of gold as a prior step to its determination by electrothermal atomic absorption spectrometry. It is based on the extraction of gold in hydrochloric acid medium using the non-ionic surfactant polyethyleneglycolmono-p-nonylphenylether (PONPE 7.5) without adding a chelating agent. The preconcentration of a 50 mL sample solution was thus enhanced by a factor of 200. The resulting calibration graph was linear in the range of 10–200 ng L−1 with a correlation coefficient of 0.9993. The limit of detection (3s) obtained under optimal conditions was 2.0 ng L−1. The relative standard deviation for 10 replicate determinations at a 100 ng L−1 Au level was 3.6%. The method was applied to the ultra-trace determination of gold in water and copper samples.  相似文献   

3.
Chitosan resin functionalized with 3,4-dihydroxy benzoic acid (CCTS-DHBA resin) was used as a packing material for flow injection (FI) on-line mini-column preconcentration in combination with inductively coupled plasma-atomic emission spectrometry (ICP-AES) for the determination of trace elements such as silver, bismuth, copper, gallium, indium, molybdenum, nickel, uranium, and vanadium in environmental waters. A 5-mL aliquot of sample (pH 5.5) was introduced to the minicolumn for the adsorption/preconcentration of the metal ions, and the collected analytes on the mini-column were eluted with 2 M HNO3, and the eluates was subsequently transported via direct injection to the nebulizer of ICP-AES for quantification. The parameters affecting on the sensitivity, such as sample pH, sample flow rate, eluent concentration, and eluent flow rate, were carefully examined. Alkali and alkaline earth metal ions commonly existing in river water and seawater did not affect the analysis of metals. Under the optimum conditions, the method allowed the determination of metal ions with detection limits of 0.08 ng mL−1 (Ag), 0.9 ng mL−1 (Bi), 0.07 ng mL−1 (Cu), 0.9 ng mL−1 (Ga), 0.9 ng mL−1 (In), 0.08 ng mL−1 (Mo), 0.09 ng mL−1 (Ni), 0.9 ng mL−1 (U), and 0.08 ng mL−1 (V). By using 5 mL of sample solution, the enrichment factor and collection efficiency were 8–12 fold and 96–102%, respectively, whereas the sample throughput was 7 samples/hour. The method was validated by determining metal ions in certified reference material of river water (SLRS-4) and nearshore seawater (CASS-4), and its applicability was further demonstrated to river water and seawater samples.  相似文献   

4.
A simple and selective method using ammonium pyrrolidinedithiocarbamate modified activated carbon (APDC-AC) as solid phase extractant has been developed for speciation of As(III) in water samples. At pH 1.8–3.0, As(III) could be adsorbed quantitatively by APDC-AC, and then eluted completely with 2.0 mL of 0.1 mol L−1 HNO3, while As(V) could almost not be retained at pH 1–7. Effects of acidity, sample flow rate, concentration of elution solution and interfering ions on the recovery of As(III) have been systematically investigated. Under the optimal conditions, the adsorption capacity of APDC-AC for As(III) is 7.3 mg g−1. The detection limit (3σ) of As(III) is 0.05 ng mL−1 for graphite furnace atomic absorption spectrometry (GFAAS) with enrichment factor of 50, and the relative standard deviation (RSD) is 4.1% (n = 9, C = 5 ng mL−1). The method has been applied to the determination of trace As(III) in water, and the recoveries of As(III) are 100 ± 10%. Correspondence: Yiwei Wu, Department of Chemistry and Environmental Engineering, Hubei Normal University, Huangshi 435002, P.R. China  相似文献   

5.
Li L  Hu B  Xia L  Jiang Z 《Talanta》2006,70(2):468-473
A method based on single-drop microextraction (SDME) combined with electrothermal vaporization (ETV)-ICP-MS was proposed for the determination of trace Cd and Pb. 8-Hydroxyquinoline (8-HQ) was employed as extractant dissolved in several microliters of chloroform and then an organic microdrop was formed at the tip of the microsyringe needle to extract the interest analytes. The vaporization behavior of the metal-8-HQ chelates in graphite furnace was investigated, and the ETV temperature program was optimized. The factors that influenced the extraction efficiency of target analytes (including pH value, flow rate of sample, extraction time and organic microdrop volume) were studied. Under the optimum conditions, the detection limits of the Cd and Pb were 4.6 and 2.9 pg mL−1 with the enrichment factor of 140-fold for Cd and 190-fold for Pb, respectively. The proposed method was applied successfully to the determination of trace Cd and Pb in environmental and biological samples. In order to validate the developed method, a certified reference material of GBW 08501 peach leaves was analyzed and the determined values obtained were in a good agreement with the certified values.  相似文献   

6.
A method based on cloud point extraction (CPE) separation/preconcentration of trace cadmium as a prior step to its determination by graphite furnace atomic absorption spectrometry (GFAAS) has been developed. If the system temperature is higher than the cloud point temperature (CPT) of the nonionic surfactant of p-octyl polyethyleneglycolphenyether (Triton X-100), the complex of Cd2+ with 1-(2-pyridylazo)-2-naphthol (PAN) could be extracted into surfactant-rich phase. The chemical variables affecting CPE were evaluated and optimized. Under the optimum conditions, preconcentrating 10.0 mL of water samples permitted a limit of detection of 5.9 ng · L−1 (3σ) for cadmium with an enhancement factor of 50 and a relative standard deviation of 2.1% (n = 11, c = 2.0 ng · mL−1). The method was applied to the determination of cadmium in reference material and water samples with satisfactory results.  相似文献   

7.
A procedure for the determination of traces of mercury by liquid-phase microextraction based on solidification of a floating organic droplet for separation and electrothermal atomic absorption spectrometry for final measurement has been developed. For this purpose, 50 μL of pre-heated (50 °C) undecanoic acid (UA), are added to 25 mL of aqueous sample solution at pH 5. The mixture, maintained at 50 °C, is stirred for 10 min using a high stirring rate in order to fragment the UA drop into droplets, thus favoring the extraction process. Next, the vial is immersed in an ice bath, which results in the solidification of the UA drop that is easily separated. Injection into the atomizer is carried out after gentle heating. The pyrolytic atomizers are coated with electrolytically reduced palladium that acts as an effective chemical modifier for more than 500 firings. Under the optimized conditions, the detection limit was 70 ng L−1 mercury with an enrichment factor of 430. The relative standard deviation of the measurements was in the 2.1–3.5% range. Recovery studies applied to the determination of mercuric ions in bottled and tap water samples were in the 92–104% range.  相似文献   

8.
A method was developed for the determination of trichloroanisole, tribromoanisole and pentachloroanisol by solid-phase microextraction and gas chromatography in paper samples (Kraft liner, Test liner and Miolo). Four commercial SPME fibers were evaluated: Polydimethylsiloxane (PDMS), Polyacrylate (PA), Carbowax/Divinylbenzene (CW/DVB) and Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS). DVB/CAR/PDMS gave the best results and was therefore selected. Other variables involved in the extraction procedure were studied and optimized, such as: sample volume, salting-out effect, temperature and extraction time, effect of organic solvent and previous sample preparation. Optimum conditions were obtained using 20 mL of sample with 5 mol L−1 NaCl in a 40 mL vial, extraction temperature of 70 °C and sonication and extraction time of 30 and 40 min, respectively. Detection limits ranged from 0.43 to 1.32 ng g−1 for all analytes. Recoveries between 70 and 100% were obtained and relative standard deviation was below 10% for all compounds.  相似文献   

9.
The performance of the dispersive liquid–liquid microextraction (DLLME) technique for the determination of eight UV filters and a structurally related personal care species, benzyl salicylate (BzS), in environmental water samples is evaluated. After extraction, analytes were determined by gas chromatography combined with mass spectrometry detection (GC-MS). Parameters potentially affecting the performance of the sample preparation method (sample pH, ionic strength, type and volume of dispersant and extractant solvents) were systematically investigated using both multi- and univariant optimization strategies. Under final working conditions, analytes were extracted from 10 mL water samples by addition of 1 mL of acetone (dispersant) containing 60 μL of chlorobenzene (extractant), without modifying either the pH or the ionic strength of the sample. Limits of quantification (LOQs) between 2 and 14 ng L−1, inter-day variability (evaluated with relative standard deviations, RSDs) from 9% to 14% and good linearity up to concentrations of 10,000 ng L−1 were obtained. Moreover, the efficiency of the extraction was scarcely affected by the type of water sample. With the only exception of 2-ethylhexyl-p-dimethylaminobenzoate (EHPABA), compounds were found in environmental water samples at concentrations between 6 ± 1 ng L−1 and 26 ± 2 ng mL−1.  相似文献   

10.
 Column solid-phase extraction using TiO2 (anatase) as a solid sorbent was applied to preconcentrate traces of Cd, Co, Cu, Fe, Mn, Ni and Pb from AR grade alkali salts prior to their measurements by atomic absorption spectrometry (AAS). Multi-element preconcentration was achieved from NaCl, KCl, KNO3, NaNO3, CH3COONa, NaHCO3 and Na2CO3 solutions, whereas the sorption of trace elements from phosphates and sulfates is not quantitative. Optimal conditions (recoveries of the analytes >95%) for solid-phase co-extraction of the most common heavy metal ions are proposed. The conditions for quantitative and reproducible elution and subsequent AAS are established. A method of determination of trace elements in different salts is proposed. It is characterized by precision, reproducibility and a high preconcentration factor. The solid-phase extraction by TiO2, combined with ETAAS allows the determination of 0.1 ng g-1 Cd, 2 ng g-1 Co, 1 ng g-1 Cu and Ni, 0.5 ng g-1 Mn and 0.4 ng g-1 Pb. Received: 1 April 1996/Revised: 24 June 1996/Accepted: 9 July 1996  相似文献   

11.
The possibility was investigated of using 2-mercaptobenzothiazole (MBT) for Ag(I) concentration by micellar extraction at cloud point (CP) temperature and subsequent determination by flame atomic absorption spectrometry (FAAS). The method is based on the complexation of Ag(I) with 2-mercaptobenzothiazole (MBT) in the presence of non-ionic micelles of Triton X-114. The effect of experimental conditions such as pH, concentration of chelating agent and surfactant, equilibration temperature and time on cloud point extraction was studied. Under the optimum conditions, the preconcentration of 10 mL of water sample in the presence of 0.1% Triton X-114 and 2 × 10−4 mol L−1 2-mercaptobenzothiazole permitted the detection of 2.2 ng mL−1 silver. The calibration graph was linear in the range of 10–200 ng mL−1, and the recovery of more than 99% was achieved. The proposed method was used in FAAS determination of Ag(I) in water samples.  相似文献   

12.
Pei Liang  Ehong Zhao  Feng Li 《Talanta》2009,77(5):1854-1857
A new method for the determination of palladium was developed by dispersive liquid-liquid microextraction preconcentration and graphite furnace atomic absorption spectrometry detection. In the proposed approach, diethyldithiocarbamate (DDTC) was used as a chelating agent, and carbon tetrachloride and ethanol were selected as extraction and dispersive solvent. Some factors influencing the extraction efficiency of palladium and its subsequent determination, including extraction and dispersive solvent type and volume, pH of sample solution, concentration of the chelating agent and extraction time, were studied and optimized. Under the optimum conditions, the enrichment factor of this method for palladium reached at 156. The detection limit for palladium was 2.4 ng L−1 (3σ), and the relative standard deviation (R.S.D.) was 4.3% (n = 7, c = 1.0 ng mL−1). The method was successfully applied to the determination of trace amount of palladium in water samples.  相似文献   

13.
A novel method for the determination of five sulfonylurea herbicides in soil was developed by a dispersive solid-phase extraction (DSPE) clean-up followed by dispersive liquid–liquid microextraction (DLLME), prior to sweeping micellar electrokinetic chromatography (MEKC). In the DSPE-DLLME, 10 g of soil sample was first extracted with 10 mL of acetonitrile containing 5% formic acid (pH 3.0). The extract was then cleaned-up by a DSPE with C18 as sorbent. A 1 mL aliquot of the resulting extract was then added into a centrifuge tube containing 5 mL of water adjusted to pH 2.0 and 60.0 μL chlorobenzene (as extraction solvent) for DLLME procedure. Then, the organic sample extraction solution was evaporated to dryness, and reconstituted with 20.0 μL of 1.0 mmol L−1 Na2HPO4 (pH 10.0) for sweeping-MEKC analysis after DLLME. Under optimized conditions, the method provided as high as 3,000- to 5,000-fold enrichments factors. The linearity of the method was in the range of 3.3–200 ng g−1 for chlorimuron ethyl and bensulfuron methyl, and in the range of 1.7–200 ng g−1 for tribenuron methyl, chlorsulfuron and metsulfuron methyl, with the correlation coefficients (r) ranging from 0.9965 to 0.9983, respectively. The limits of detection (LODs) ranged from 0.5 to 1.0 ng g−1. The intraday relative standard deviations (RSDs, n = 5) were below 5.3% and interday RSDs (n = 15) within 6.8%. The recoveries of the method for the five sulfonylureas from soil samples at spiking levels of 5.0, 20.0, and 100.0 ng g−1 were 76.0–93.5%, respectively. The developed method has been successfully applied to the analysis of the target sulfonylurea herbicide residues in soil samples with a satisfactory result.  相似文献   

14.
A new simple flow injection analysis (FIA) system is described for on-line preconcentration by solid phase extraction and simultaneous determination of Hf and Zr in different samples using inductively coupled plasma atomic emission spectroscopy with a charge coupling detector (CCD). Quinalizarin (QA) was loaded on an octadecyl silica-polyethylene mini-column for the retention of Hf and Zr ions in complexed form. A 0.3 M ammonium acetate was used as buffer for providing suitable conditions for complexation and increasing reproducibility. Retained ions on the solid phase were then eluted by a solution containing 3.0 M HCl and 0.5 M HNO3. In this work, for reducing bandwidths of eluted ions, elution of minicolumn was carried out from opposite direction. The same solution was used as both carrier and eluent, in order to increase the reproducibility. The eluted ions were introduced into the conventional nebulizer of ICP–AES instrument. Effects of different parameters, including instrumental parameters of ICP and FIA were optimized. An enrichment factor of 330 for each analyte ion was obtained at a concentration level of 80 ppb. The detection limits of the proposed method for Hf and Zr were 0.16 ng mL−1 and 0.04 ng mL−1 respectively. The ability of the method for the recovery of Hf and Zr ions was tested in the presence of several diverse metal ions in a synthetic mixture and some real matrices. It was also applied to the determination of Zr and Hf ions in a standard soil and in a standard alloy as real samples.  相似文献   

15.
 Microwave digestion reduction-aeration and pyrolysis combined with cold vapour atomic absorption and cold vapour atomic fluorescence are compared for the determination of total mercury in several biological and environmental matrices. The biological samples were digested in a mixture of HNO3/H2O2, the environmental samples in a mixture of HNO3/HClO4. After reduction with SnCl2, the mercury was collected by two-stage gold amalgamation. After microwave digestion reduction-aeration, detection limits of 1.4 ng g−1 and 0.6 ng g−1 were obtained for cold vapour atomic absorption spectrometry (CVAAS) and cold vapour atomic fluorescence spectrometry (CVAFS), respectively, for 250 mg of environmental samples. For biological samples (500 mg) the detection limits were 0.7 ng g−1 (CVAAS) and 0.4 ng g−1 (CVAFS). After pyrolysis, detection limits of 3.5 ng g−1 and 1.6 ng g−1 for CVAAS and CVAFS, respectively, were obtained for a 10 mg sample. Pyrolysis can only be applied when the organic content of the sample is not too high. Accurate results were obtained for 8 certified reference materials of both environmental and biological origin. In addition, a real sludge sample was analysed. Author for correspondence. E-mail: richard.dams@rug.ac.be Received September 18, 2002; accepted December 3, 2002 Published online May 5, 2003  相似文献   

16.
A method based on cloud point extraction and graphite furnace atomic absorption spectrometry (GFAAS) was developed for the analysis of trace tin in water samples. After cloud point extraction, the tin in the water samples was preconcentrated and successfully separated from most interferents. During the procedure, 8-hydroxyquinoline (8-HQ) was used as chelating reagent, and Triton X-114 was added as surfactant. The parameters affecting the sensitivity and the extraction efficiency, such as solution pH, concentration of 8-HQ and Triton X-114, equilibration temperature and centrifuge time, were evaluated and optimized. Under the optimum conditions, a preconcentration factor of 96.2 was obtained for a 20 mL water sample. The detection limit (LOD) was as low as 0.012 ng mL−1, and the analytical curve was linear in the range of 0.05–2.0 ng mL−1 with satisfactory precision (RSD <4.1%). The proposed method was successfully applied to the determination of trace tin in water samples with recoveries in the range of 85.0–112.0%.  相似文献   

17.
A sensitive method has been developed and validated for the determination of diverse groups of pharmaceuticals, steroid hormones, and hormone-like personal care products in sewage sludge. Samples were extracted by ultrasonic-assisted extraction followed by solid-phase extraction cleanup. For determination of estrogens and hormone-like phenolic compounds, sample extracts were further derivatized with dansyl chloride and purified with silica gel column chromatography to improve the analytical sensitivity. The chemicals were determined by ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS) in multiple-reaction monitoring mode. Recoveries ranged mostly from 63% to 119% with relative standard deviations within 15%. Method quantification limits were 0.1–3 ng g−1 dry weight (dw) for sewage sludge. The method was applied to a preliminary investigation of pharmaceuticals and personal care products (PPCPs) in sewage sludge and sediment in the Pearl River Delta, South China. Triclosan, triclocarban, 2-phenylphenol, bisphenol A, and parabens were ubiquitously detected at 3.6–5088.2 ng g−1 dw in sludge and 0.29–113.1 ng g−1 dw in sediment samples, respectively. Estrone, carbamazepine, metoprolol, and propranolol were also frequently quantified in the sludge and sediment samples. The dewatering process caused no significant losses of these PPCPs in sewage sludge.  相似文献   

18.
This work describes a new analytical procedure for trace vanadium by graphite furnace atomic absorption spectroscopy coupled to cloud point extraction (CPE) as the separation-preconcentration method. The CPE behavior of vanadium using methylene blue as complex agent and Triton X-100 as a surfactant was investigated systematically. Under the optimized conditions, the detection limit was 0.7 ng · mL−1, and the relative standard deviation was 4.3% for vanadium (c = 50.0 ng · mL−1, n = 5). The recovery of vanadium was in the range of 98.9–102.8%. The method was applied to the analysis of vanadium in certified reference materials and real samples. The results obtained were in good agreement with the certified values. Correspondence: Xiashi Zhu, Key Laboratory of Environmental Material and Environmental Engineering of Jiangsu province/College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R. China  相似文献   

19.
A micro-solid phase extraction technique was developed using a novel polypyrrole-polyamide nanofiber sheet, fabricated by electrospinning method. The applicability of the new nanofiber sheet was examined as an extracting medium to isolate malathion as a model pesticide from aqueous samples. Solvent desorption was subsequently performed in a microvial, and an aliquot of extractant was injected into gas chromatography–mass spectrometry. Various parameters affecting the electrospinning process including monomer concentration, polyamide content, applied voltage, and electrospinning time were examined. After fabricating the most suitable preparation conditions, influential parameters on the extraction and desorption processes were optimized. The developed method proved to be rather convenient and offers sufficient sensitivity and good reproducibility. The limit of detection (S/N = 3) and limit of quantification (S/N = 10) of the method under optimized conditions were 50 and 100 ng L−1, respectively. The relative standard deviation at concentration level of 1 ng mL−1 was 2% (n = 3). The calibration curve of analyte showed linearity in the range of 0.1–1 ng mL−1 (R 2 = 0.9975). The developed method was successfully applied to tap and Zayanderood river water samples, while the relative recovery percentages of 98% and 96% were obtained, respectively. The whole procedure showed to be conveniently applicable and quite easy to be manipulated.  相似文献   

20.
The polarographic behavior of thiamethoxam (a neonicotinoid insecticide) was studied by direct current and differential pulse polarography. Depending on the pH thiamethoxam exhibited one or two well-defined cathodic polarographic waves. The characteristics of the electrode reaction were investigated and it was found that at pH > 5.0 the target molecule captures four electrons in the first step, and two in the second. Based on the reduction behavior of the target molecule on the mercury electrode, a differential pulse polarographic method was elaborated for the rapid determination of thiamethoxam at pH 8.0. With the optimized method, a linear response for thiamethoxam was found in the concentration range of 31.1 − 470 ng cm−3, the relative standard deviation did not exceed 1.6%, and the detection and quantitation limits were found to be 9.3 ng cm−3 and 31.1 ng cm−3, respectively. The method was applied to the determination of thiamethoxam in commercial formulations and real samples (potato and maize). The procedure is simple, fast, sensitive, and compares well with comparative spectrophotometric and chromatographic (HPLC/DAD) methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号