首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
李中元  李勇  夏爱林 《发光学报》2017,38(3):296-302
采用溶胶-凝胶法制备了Na2Y1-xMg2(VO4)3∶x Eu~(3+)(x=0.15~0.75)系列自激活荧光粉。用XRD、SEM、光致发光光谱和荧光衰减曲线分别对其结构、形貌和发光性能进行表征。XRD结果显示样品为纯石榴石结构,其中Eu~(3+)取代Y~(3+);SEM照片显示样品为粒径大小在0.3~1μm范围内不规则的光滑球状颗粒;光谱分析表明,Na2YMg2(VO4)3作为自激活发光基质可以被200~400 nm紫外光有效激发,发出源于VO_4~(3-)电荷迁移跃迁的波长范围为400~700 nm的宽谱带绿光。掺杂Eu~(3+)后,在340 nm紫外光激发下同时出现了VO_4~(3-)的电荷迁移带和Eu~(3+)的特征光谱。不同浓度Eu~(3+)掺杂的光谱和荧光衰减曲线表明,存在VO_4~(3-)和Eu~(3+)之间的能量传递。  相似文献   

2.
张佳  陈贵宾 《发光学报》2014,(12):1432-1436
采用固相法合成了KSr4(BO3)3∶x Eu2+(KSB∶x Eu2+)荧光粉,通过X射线粉末衍射(XRD)、扫描电镜(SEM)及光致发光光谱分别研究了样品的晶相、形貌及发光性质。XRD研究结果表明制备的样品为正交晶系的KSr4(BO3)3单相。当Eu2+的掺杂摩尔分数x为1.5%时,在激发光谱250~550 nm范围内观察到了两个宽带激发,可归属为Eu2+的4f7-4f65d1跃迁;在400 nm激发下,发射谱呈现出一个不对称的黄色发射带,峰值位于560 nm处,可归属于Eu2+的4f65d1-4f7跃迁。因在KSr4(BO3)3化合物中存在3个Sr格位,根据其光谱特征可推测发射谱中非对称的发射带来源于多个Eu2+发光中心。  相似文献   

3.
采用高温固相法合成了适合近紫外光、蓝光激发的K2ZnSiO4∶Eu3+红色荧光粉,研究了该荧光粉的发光特性。XRD结果显示,所合成的荧光粉主晶相为K2ZnSiO4。样品的激发光谱由O2-→Eu3+电荷迁移带(200~350nm)和Eu3+离子的特征激发峰(350~500nm)组成,最强峰位于396nm,次强峰位于466nm。在396nm和466nm激发下,样品均呈多峰发射,分别由Eu3+离子的5D0→7FJ(J=0,1,2,3,4)能级跃迁产生,其中619nm处峰值最大。增加Eu3+离子的掺杂浓度,荧光粉的发光逐渐增强。在实验测定的浓度范围内,未出现浓度猝灭现象。不同Eu3+浓度样品的色坐标均位于色品图红光区,非常接近NTSC标准。  相似文献   

4.
Kang FW  Hu YH  Wang YH  Wu HY  Mu ZF  Ju GF  Fu CJ 《光谱学与光谱分析》2011,31(9):2341-2345
采用高温固相法制备系列红色荧光粉NazCa1-x-2y-zBiyMoO4∶Eux3++y(y,z=0,x=0.24,0.26,0.30,0.34,0.38;x=0.30,y=0.01,0.02,0.03,0.04,0.05,0.06,0.07,z=0;x=0.30,y=0.04,z=0.38)。用X射线粉末衍射(XRD)法测试了所制样品晶相结构。采用荧光光谱仪对样品的发光性能进行了表征,结果表明:当Eu3+单掺杂量浓度x=0.30时,荧光粉(Ca0.70MoO4∶Eu03.+30)的发光强度最强;当Eu3+-Bi3+共掺杂量浓度y=0.03时,电荷迁移带(CTB)强度达到最强,而对于Eu3+特征发射峰,当共掺杂浓度y<0.03时,位于393 nm处的激发峰强度比464 nm强,共掺浓度y>0.03时,464 nm峰比393 nm峰强,共掺浓度为y=0.04时,393和464 nm处两峰位置强度都达到最强。作为电荷补尝剂的Na2CO3掺入上述荧光粉中后,荧光粉激发和发射强度明显地增强。结果表明,通过调节Bi3+/Eu3+掺杂比例可以改变位于近紫外光393 nm和蓝光区464 nm处激发光相对强度。  相似文献   

5.
采用溶胶凝胶法制备了Y_4Zr_3O_(12)∶Eu~(3+)纳米荧光粉,分别采用XRD、TEM和荧光光谱仪对样品的结构、形貌和发光性能进行了表征,探讨了烧结温度和Eu~(3+)掺杂浓度对荧光粉发光性能的影响。结果表明,样品可以被394 nm和467 nm的激发光有效激发。样品的最佳烧结温度和Eu~(3+)离子的最佳掺杂摩尔分数分别为1 400℃和18%。浓度猝灭主要归因于电偶极-电偶极相互作用。  相似文献   

6.
采用水热法制备了白光LED用NaGd_(0.95-x)(WO_4)_2∶0.05Eu~(3+),x Bi~(3+)(x=0,0.02,0.04,0.06,0.08)和NaGd_(0.95-y)(WO_4)_2∶0.05Eu~(3+),y Sm~(3+)(y=0,0.01,0.02,0.03,0.04)系列红色荧光粉,通过X射线衍射仪、扫描电子显微镜及荧光分光光度计等表征手段分析了样品的物相结构、颗粒形貌以及发光性质。结果表明:少量离子掺杂对NaGd(WO_4)_2的晶体结构影响较小,样品均为四方晶系、白钨矿结构的纯相;颗粒形貌呈四方盘状,且粒度均匀,分散性良好,Bi~(3+)或Sm~(3+)的引入使颗粒尺寸由原来的4μm分别增加至5μm和6μm。该系列荧光粉均可被近紫外光(394 nm)有效激发,其最强发射峰位于614 nm处,归属于Eu~(3+)的5D0→7F2电偶极跃迁。掺杂适量的Bi~(3+)或Sm~(3+)可有效提高NaGd_(0.95)(WO_4)_2∶0.05Eu~(3+)荧光粉的发光强度和红光的色纯度,其中Sm~(3+)的引入对其影响更为明显。  相似文献   

7.
采用CaxSi合金前驱物和Eu B6常压氮化制备了Ca Al Si N3∶Eu2+氮化物红色荧光粉。研究了不同烧结温度、添加助熔剂及二次烧结对发光性能的影响。通过扫描电子显微镜(SEM)、X射线衍射(XRD)、荧光分光光度计对发光材料的形貌、晶体结构、发光性能与热稳定性进行了研究。分析结果表明:通过合金前驱物常压氮化法得到的氮化物荧光粉具有Ca Al Si N3结构,空间群为Cmc21。Ca Al Si N3∶Eu2+红色荧光粉的最佳烧结温度为1 550℃。添加质量分数为6%的Sr F2助熔剂后,荧光粉发光强度的提升效果最好。添加6%Sr F2助熔剂及二次烧结后得到的荧光粉的晶粒生长更加完整,颗粒度明显改善,发射光谱的相对强度也明显提高,比未加助熔剂单次烧结的荧光粉相对强度提高了近一倍。将发射峰位在640 nm的Ca0.98Al Si N3∶0.02Eu2+红色荧光粉应用在白光LED的封装中,获得了色温为3 109 K、显色指数为92.5以及色温为4 989K、显色指数为95.8的高显色白光LED,说明本文合成的氮化物红色荧光粉可以实现暖白光和正白光高显色的白LED发光器件。  相似文献   

8.
采用高温固相法制备系列红色荧光粉Naz Ca1-x-2y-zBiyMoO4 ∶ Eu3+x+y (y,z=0,x=0.24,0.26,0.30,0.34,0.38; x=0.30,y=0.01,0.02,0.03,0.04,0.05,0.06,0.07,z=0; x=0.30,y=0.04,z=0.38).用X射线粉末衍射(XRD)法测试了所制样品晶相结构.采用荧光光谱仪对样品的发光性能进行了表征,结果表明:当Eu3+单掺杂量浓度x=0.30时,荧光粉(Ca0.70 MoO4∶Eu3+0.30)的发光强度最强;当Eu3+-Bi3+共掺杂量浓度y=0.03时,电荷迁移带(CTB)强度达到最强,而对于Eu3+特征发射峰,当共掺杂浓度y<0.03时,位于393 nm处的激发峰强度比464 nm强,共掺浓度y>0.03时,464 nm峰比393 nm峰强,共掺浓度为y=0.04时,393和464 nm处两峰位置强度都达到最强.作为电荷补尝剂的Na2 CO3掺入上述荧光粉中后,荧光粉激发和发射强度明显地增强.结果表明,通过调节Bi3+ /Eu3+掺杂比例可以改变位于近紫外光393 nm和蓝光区464 nm处激发光相对强度.  相似文献   

9.
采用高温固相法合成了Ba2Ca(PO4)2:Eu2+蓝色荧光粉,研究了合成温度、合成时间、Ba/Ca比值以及Eu2+掺杂量等对材料的物相及发光特性等的影响.研究结果显示,合成温度为900/1200?C,合成时间为4 h时,可以获得纯相的Ba2Ca(PO4)2;以343 nm紫外线作为激发源时,Ba2Ca(PO4)2:Eu2+呈非对称的宽谱特征,主峰位于454 nm,分析认为,Eu2+在Ba2Ca(PO4)2中占据不同的晶体学格位,形成了不同的发光中心,造成材料呈非对称发射;监测454 nm发射峰,对应的激发光谱覆盖200—450 nm区域,主峰位于343 nm,且在长波紫外段(350—410 nm)有很强的激发带;增大Eu2+掺杂量,Eu2+在Ba2Ca(PO4)2中的发射出现了浓度猝灭现象,且材料的发射峰出现了明显的红移;减小基质中Ba/Ca配比,材料在绿色区域的发射逐渐增强,材料的发光颜色由蓝逐渐变为蓝绿色,分析认为,Eu2+进入Ba2Ca(PO4)2基质体系后,不但取代Ba2+的格位,而且取代Ca2+的格位,形成不同的发光中心,从而影响材料的发光特性.  相似文献   

10.
对草酸作为沉淀剂制备的细颗粒红色荧光粉Y2 O3 ∶Eu3 + 进行结构和发光特性研究 ,结果表明 :其一次粒径为 2 0~ 30nm ,团聚尺寸D50 =0 .5 3μm。该荧光粉最大激发峰位于 2 5 2 .2nm ,较微米级荧光粉 2 33nm红移了 19.2nm ;最大的发射峰位于 6 12nm ,与微米级的相比几乎没有差别。Eu3 + 离子的掺入构成了发光中心 ,其最佳掺杂的质量分数为 9% ,荧光粉发光的猝灭浓度由微米级的 6 %提高到 9%。由于纳米晶存在表面缺陷和悬挂键 ,其亮度约为微米晶的 70 %左右 ,随着团聚尺寸的增加、煅烧温度的提高和助熔剂的加入 ,荧光粉的发光强度增大。包膜能部分消除表面缺陷和悬挂键 ,提高发光亮度。荧光粉的色坐标为x =0 .6 4 79,y =0 .344 2。  相似文献   

11.
王肖芳  张弛  邓朝勇 《发光学报》2016,37(9):1037-1042
采用高温固相法制备Ca_(2-x)SnO_4:xEu~(3+)(x=0,0.001,0.005,0.01,0.015,0.02)发光材料,分别在空气和真空氛围中进行烧结,研究Eu3+掺杂浓度及基质中氧空位对样品发光性能的影响。随着Eu~(3+)离子浓度的增加,发射强度呈逐渐增大的趋势,主发射峰由两个分别位于614 nm和618 nm的峰逐步合为一个位于616nm的发射峰。在Ca_(2-x)SnO_4∶xEu~(3+)样品的激发光谱中,存在着200~295 nm的Eu~(3+)-O~(2-)电荷迁移带,随着Eu~(3+)离子浓度的增加,电荷迁移带的峰位由271 nm红移到286 nm。此外,在Eu~(3+)离子掺杂浓度相同的情况下,真空中烧结得到样品的发光强度是空气中烧结得到样品的2倍。这是由于在真空氛围中烧结产生的氧空位增加使得传导电子密度升高,导致发光强度增加。而且,氧空位的增加导致电子陷阱的增多,这使得Ca_(2-x)SnO_4∶xEu~(3+)样品的余辉性能得到了很大程度的提高。  相似文献   

12.
Sm3+掺杂对CaMoO4:Eu3+红色荧光粉结构和发光性质的影响   总被引:1,自引:3,他引:1  
采用共沉淀法制备了CaMoO4:Eu3,Sm3+纳米荧光粉材料.系统研究了Sm3+离子的引入对CaMoO4:Eu3+材料的结构和发光性质的影响.结果表明:纳米材料的尺寸随着Sm3+离子掺杂浓度的增加而变小.Sm3+的引入,可实现Sm3+和Eu3+之间的能量传递,使Eu3+在近紫外405 nm处的激发增强,进而使Eu3+...  相似文献   

13.
使用高温固相法于还原气氛中合成了SrLiAl_3N_4∶Eu~(2+)荧光粉并研究了其晶体结构和发光性质。样品均可以被蓝光或紫外光有效激发发射红光。XRD和SEM图谱显示合成了单相SrLiAl3N4。粉体的激发光谱在200~600nm波长范围内呈现出双峰宽带激发带,在267nm、474nm处分别有一个激发峰。发射光谱仅有一个宽带发射峰,峰值在654nm处,属于Eu~(2+)离子的5d→4f特征跃迁。荧光粉发光强度与Eu~(2+)离子掺杂摩尔分数之间的关系表明:随着Eu~(2+)离子掺杂摩尔分数的增加,粉体发光强度先上升后下降,最佳掺杂摩尔分数为0.4%,继续增大Eu~(2+)离子的掺杂量会发生浓度猝灭现象。所准备的SrLiAl_3N_4∶Eu~(2+)荧光粉具有较好的热稳定性和较高的量子效率。  相似文献   

14.
采用高温固相法合成了Li+、Na+、K+和Si4+作为电荷补偿剂的Ca2.96Eu0.04(PO4)2白光LED用红色荧光粉。采用X射线衍射仪、荧光光谱仪对材料的物相和发光性能进行了表征。样品的激发光谱由200~310 nm的电荷迁移带和310~500 nm的锐线光谱组成,其中396 nm的激发强度最大。发射光谱主要由5D0→7F1(593 nm)和5D0→7F2(616 nm)跃迁导致的发射峰构成。掺入Li+、Na+、K+和Si4+可以有效提高Ca2.96Eu0.04(PO4)2荧光粉的发光强度,同时对荧光粉的寿命和色坐标影响不大。荧光粉的色坐标均位于红色区域。  相似文献   

15.
采用高温固相法合成了Sr(S1-xSex)系列硫属化合物掺Eu2 荧光粉。XRD表明荧光粉的组成为单相,而且体系Sr(S1-xSex)∶0.005Eu2 中晶胞参数随着组成的变化呈现良好的线性关系,遵守韦加定律。漫反射光谱与激发光谱吻合,说明荧光粉吸收的能量能够有效地激发发光中心而发光,激发光谱中较低能量区域覆盖了400~500nm的光谱范围,与蓝光LED芯片的发射光匹配。发射光谱呈现的是Eu2 离子的5d→4f特征跃迁发射带,当x由0增加到1.0的过程中,发射峰值波长由617nm逐渐蓝移到571nm。不同基质中掺杂的Eu2 离子的荧光寿命均为微秒数量级,与Eu2 离子的4f65d1→4f7跃迁相符合。将荧光粉封装在发蓝色光(λ=460nm)的GaN芯片上制作了LED器件,测量了器件的发光强度、色纯度和色坐标等参数。Sr(S1-xSex)∶Eu2 系列硫属化合物掺铕荧光粉能够有效地被GaN芯片发出的蓝色光激发,发出从橙色到红色的可见光,是一类较好的LED用荧光粉。  相似文献   

16.
用高温固相法合成了红色荧光粉Ca4(La1-x-yGdxYy)1-nO(BO3)3∶nEu3+(LnCOB∶Eu,Ln=La1-x-y-GdxYy),并对其在真空紫外至可见范围的发光性质进行了系统的研究,找出发光较好的组分范围并与某些商品红色荧光粉进行了比较。LnCOB∶Eu在254 nm紫外线激发下的发射光谱为Eu3+的5D0→7FJ(J=0,1,2,3,4)的特征跃迁。监测其最强的5D0→7F2发射线,其激发光谱在250 nm左右有一个宽的激发带,归属于Eu-O电荷迁移带,适于用254 nm汞线激发;在300~450 nm有一些弱的归属于Eu3+的f-f跃迁的锐吸收峰;在真空紫外区184~188 nm附近有一个宽带,为基质吸收带,并可能包含了Eu3+的f-d跃迁。在Ca4GdO-(BO3)3∶Eu3+的激发光谱中,还包含了Gd3+的8S7/2→6GJ跃迁,此跃迁增强了荧光粉在184~188 nm附近的激发强度。  相似文献   

17.
采用高温固相反应法制备了Sr_(1-x)Ca_xSi_2O_2N_2∶Eu~(2+)系列荧光粉,研究Y~(3+)离子掺入对荧光粉发光性能的影响。对于Sr Si_2O_2N_2∶Eu~(2+),Y~(3+)离子掺入主要起到稳定Eu~(2+)价态的作用,避免Eu~(2+)氧化为Eu~(3+),从而提高Sr Si_2O_2N_2∶Eu~(2+)的发光性能。对于Ca Sr Si_2O_2N_2∶Eu~(2+),Y~(3+)离子掺入除了稳定Eu~(2+)价态作用外,还能有效减小Eu~(2+)取代Ca~(2+)后晶格膨胀引起的应力,提高Eu~(2+)在晶格中的溶解度。Sr_(1-x)Ca_xSi_2O_2N_2∶Eu~(2+)(x=0,0.15,0.3,0.6,0.75,0.95)系列荧光粉中随着Ca含量的增加,共掺Y~(3+)离子对样品发光强度的提高程度也随之增加(20%~80%)。  相似文献   

18.
采用高温固相反应法制备了Ba1.97Ca1-x(B3O6)2∶Eu2+,Mnx2+(x=0,0.03,0.06,0.15)荧光粉,研究了其相组成与荧光特性。结果表明,样品具有单相Ba2Ca(B3O6)2晶体结构。Eu2+同时占据Ba2+格位和Ca2+格位。在317 nm波长的紫外光激发下,Eu2+辐射出峰值在450 nm附近的宽谱蓝光。通过能量传递作用,Mn2+辐射峰值为600 nm左右的宽谱红光。蓝光和红光叠加形成色坐标为(x=0.371,y=0.282)的近白光发射。样品的激发光谱分布在250~400 nm的波长范围,有望在紫外激发的白光LED中获得应用。  相似文献   

19.
通过高温固相法合成Sr3LaAxV3-xO12:Eu3+(A=Mo,W)荧光粉,利用MoO42-和WO42-取代基质中部分VO43-,改变基质组成和结构,进而影响基质和激活剂Eu3+离子的发光性能。采用X射线衍射(XRD)、扫描电子显微镜(SEM)和荧光分光光度计对所合成样品的物相、形貌、荧光性能及荧光寿命进行表征。研究表明,MoO42-和WO42-的部分掺杂对基质发光位置和强度均有影响,能明显减弱VO43-的发光,但对Eu3+离子发光影响不大,添加电荷补偿剂F-可以加强VO43-对Eu3+离子的能量传递。通过调整基质VO43-发光和Eu3+离子发光,可以得到单一基质的白光荧光粉。初步探讨了阴离子掺杂对Eu3+离子红光发射增强的机理。  相似文献   

20.
利用高温固相法合成Na_2CaSiO_4:Sm~(3+),Eu~(3+)系列荧光粉末,研究了Sm~(3+)和Eu~(3+)掺杂对Na_2CaSiO_4晶体结构的影响、材料发光特性以及存在的能量传递现象.X射线衍射结果表明Sm~(3+)和Eu~(3+)单掺及共掺样品均为单相的Na_2CaSiO_4结构,晶体结构没有改变.Na_2CaSiO_4:Sm~(3+)荧光样品在404 nm激发波长下呈现峰峰值为602 nm的橙红色荧光,来源于~4G_(5/2)→~6H_(7/2)跃迁.Na_2CaSiO_4:Eu~(3+)荧光样品在395 nm激发波长下发射出峰峰值为613 nm的红色荧光.对光谱和荧光寿命的测试和分析结果表明Sm~(3+)与Eu~(3+)之间存在能量传递,通过理论计算得到Sm~(3+)和Eu~(3+)之间的能量传递临界距离为1.36 nm,相互作用形式为电四极-电四极相互作用.随着Eu~(3+)掺杂浓度的增加,能量传递效率也逐渐提高至20.6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号