首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
用溶胶-水热法制备了Sm3+掺杂的Ti O2粉体(Ti O2∶Sm3+),将其按不同质量分数掺杂到P25基体中,制备了具有下转换功能的光阳极,并将其用于染料敏化太阳能电池中,提高了电池的光电性能。荧光光谱显示,Ti O2∶Sm3+粉体可以将紫外光转换为570~700 nm的可见光。当下转换光阳极中Ti O2∶Sm3+粉体的掺杂质量分数为80%时,短路电流密度达到13.12 m A/cm2,与纯P25光阳极相比,提高了26.5%,转换效率也提高了23.5%。  相似文献   

2.
用溶胶-凝胶法制备了Eu,Sm共掺TiO_2粉体,将其与P25复合,制备了下转换光阳极,用于染料敏化太阳能电池,利用其下转换特性提高电池的光电性能.用荧光光谱对粉体的发光性能进行表征,荧光光谱显示:Eu,Sm共掺TiO_2粉体受463nm光激发可以发射550~700nm的可见光,具有下转换功能.当Eu~(3+)的摩尔掺杂含量为1%,Sm~(3+)的摩尔含量为0.5%时,制备的Eu~(3+),Sm~(3+)共掺下转换光阳极,短路电流达到14.08mA/cm2,与使用Eu~(3+)掺杂TiO_2的下转换光阳极电池相比,提高了32.08%,转换效率也达到5.29%.  相似文献   

3.
周雄图  曾祥耀  张永爱  郭太良 《发光学报》2013,34(11):1424-1429
采用热蒸发法成功制备了Al掺杂四针状ZnO纳米结构(T-AZO),利用扫描电子显微镜、X射线衍射仪、荧光光谱仪和场发射测试系统分别研究了不同Al摩尔分数对T-AZO纳米结构表面形貌、微结构、光致发光谱和场发射特性的影响。实验结果表明:T-AZO纳米结构呈现六角纤锌矿结构,Al掺杂对四针状ZnO纳米结构的形貌产生明显影响并且使紫外发射峰产生蓝移。实验中,当Al掺杂摩尔分数为3%时,场发射性能最好,其开启场强为1.33 V/μm,场增强因子为8 420。  相似文献   

4.
采用中频磁控溅射法制备了镱铒共掺Al2O3薄膜,铒镱掺杂浓度分别为0.3%,3.6%(摩尔分数,全文同).讨论了三价铒离子529 nm和549 nm光致发光的上转换机理.在291.8-573.3 K温度区间测量了两绿上转换光谱荧光强度比的温度特性,拟合表达式为R=5.37exp(-738/T).366 K温度时灵敏度最大,为0.0039 K-1.结果表明镱铒共掺Al2O3薄膜适合作为小型、高温和高灵敏的光学温度传感材料.  相似文献   

5.
研究了二甲基亚砜(DMSO)掺杂浓度对基于聚(3-己基噻吩)(P3HT)和(6,6)-苯基碳60丁酸甲酯(PCBM)为有源层的聚合物太阳能电池性能影响。结果表明,掺杂DMSO可以提高聚合物太阳能电池短路电流密度和填充因子。DMSO掺杂质量比为3%时,电池短路电流密度提高到7.88mA·cm-2,填充因子为55.5%。能量转换效率达到2.54%,相比没有掺杂DMSO的电池,能量转换效率提高了17%。傅里叶变换红外光谱被用于鉴定和分析掺杂DMSO对材料P3HT∶PCBM化学性质的影响。傅里叶变换红外光谱表明,掺杂后P3HT和PCBM的化学性质都没有改变。为分析掺杂DMSO改善器件能量转换效率的原因,通过紫外-可见光谱和电流密度-电压特性曲线分别表征器件的光吸收能力以及电致发光器件的载流子迁移率。与P3HT∶PCBM薄膜相比,P3HT∶PCBM∶DMSO薄膜在可见光范围内的吸收峰有明显红移且吸收强度增强。可见光吸收的改善是实现短路电流密度提高的有力保障。太阳能电池性能的增强是因为DMSO的掺杂提高了P3HT∶PCBM的载流子迁移率和吸收光谱宽度。  相似文献   

6.
采用溶胶-凝胶法制备了TiO2/Sm3+下转换薄膜,利用其下转换特性将紫外光转换为可见光,提高了可见光光照强度。利用X射线衍射和荧光光谱对TiO2/Sm3+粉体进行了表征,并对TiO2/Sm3+下转换薄膜进行了荧光光谱测试和紫外-可见分光光度计测试。荧光光谱显示,TiO2/Sm3+薄膜在受到395 nm紫外光照射时可发射出540~600 nm连续波长的可见光,具有下转换特性。二层TiO2/Sm3+下转换薄膜的可见光透过率与单纯的TiO2薄膜基本相同,利用其下转换特性使电池短路电流提高了13.2%,光电转换率提高了16.2%。  相似文献   

7.
研究了二甲基亚砜(DMSO)掺杂浓度对基于聚(3-己基噻吩)(P3HT)和(6,6)-苯基碳60丁酸甲酯(PCBM)为有源层的聚合物太阳能电池性能影响。结果表明,掺杂DMSO可以提高聚合物太阳能电池短路电流密度和填充因子。DMSO掺杂质量比为3%时,电池短路电流密度提高到7.88 mA·cm-2,填充因子为55.5%。能量转换效率达到2.54%,相比没有掺杂DMSO的电池,能量转换效率提高了17%。傅里叶变换红外光谱被用于鉴定和分析掺杂DMSO对材料P3HT∶PCBM化学性质的影响。傅里叶变换红外光谱表明,掺杂后P3HT和PCBM的化学性质都没有改变。为分析掺杂DMSO改善器件能量转换效率的原因,通过紫外-可见光谱和电流密度-电压特性曲线分别表征器件的光吸收能力以及电致发光器件的载流子迁移率。与P3HT∶PCBM薄膜相比,P3HT∶PCBM∶DMSO薄膜在可见光范围内的吸收峰有明显红移且吸收强度增强。可见光吸收的改善是实现短路电流密度提高的有力保障。太阳能电池性能的增强是因为DMSO的掺杂提高了P3HT∶PCBM的载流子迁移率和吸收光谱宽度。  相似文献   

8.
Tm3+掺杂SiO2-Al2O3-PbF2-AlF3玻璃的光谱特性   总被引:2,自引:0,他引:2  
用高温熔融法制备了不同Tm3 摩尔分数掺杂的摩尔分数比为0.3(SiO2)…0.1(Al2O3)…0.1(AlF3)…0.5(PbF2)…x(Tm2O3)(摩尔分数x=0.5%,1.0%,2.0%,3.0%)玻璃。从吸收光谱特性出发,应用Judd-Ofelt理论,计算得到了Tm3 的J-O强度参量(Ω2,Ω4,Ω6)及Tm3 各激发能级的自发辐射跃迁概率、荧光分支比以及辐射寿命等光谱参量。在808nm波长的激光二极管激发下,研究了不同Tm3 掺杂摩尔分数下玻璃在约1.47μm与约1.8μm处的荧光特性,在掺杂摩尔分数约达到2.0%时,在1.8μm处的荧光强度达最大,然后随着掺杂摩尔分数的增大,其荧光强度反而降低。作者从Tm3 的交叉弛豫与摩尔分数猝灭效应解释了这一荧光强度变化的规律,同时,根据McCumber理论计算了Tm3 跃迁3H6→3F4的吸收截面和跃迁3F4→3H6的受激发射截面。  相似文献   

9.
利用溶胶-凝胶法制备了Dy3+掺杂的YAl3(BO3)4荧光粉。通过X射线衍射仪(XRD)、荧光(FL)光谱仪对所合成样品的结构和发光性能进行表征。研究了Dy3+离子掺杂浓度和焙烧温度对YAl3(BO3)4∶Dy3+荧光粉的结构和发光性能的影响。结果表明:Y1-xAl3(BO3)4∶Dy3x+在Dy掺杂摩尔分数为x=0.05,焙烧温度为1 100℃时的发光强度最大。Y0.95Al3(BO3)4∶Dy30.+05荧光粉在774 nm波长光激发下,最强发射峰位于575nm。该荧光粉可将700~900 nm和290~450 nm范围内的光转换为染料敏化电池吸收的575 nm附近可见光。  相似文献   

10.
研究了Pr3 ,Sm3 掺杂对YAG∶Ce发射光谱及其荧光寿命的影响。观察到当掺杂Pr3 时,在609nm处出现Pr3 的发射峰,而掺杂Sm3 时,在616nm处呈现Sm3 的发射峰。掺杂Pr3 或Sm3 增加红光区的发射峰将有利于提高YAG∶Ce荧光粉的显色性。实验中测定了(Y0.95Sm0.01Ce0.04)3Al5O12、(Y0.95Pr0.01Ce0.04)3Al5O12、(Y0.96Ce0.04)3Al5O12的荧光寿命(τ),观察到在YAG∶Ce中掺入Pr3 或Sm3 使Ce3 的荧光寿命减小。实验结果表明,少量掺杂Pr3 或Sm3 并未引起基质的结构的变化。  相似文献   

11.
为研究掺杂石墨烯量子点(GQDs)对聚合物电池的影响,采用溶剂热法制备了GQDs,掺杂到聚3-己基噻吩和富勒烯衍生物(P3HT∶PCBM)中作光敏层制备了聚合物太阳能电池。掺杂不同浓度的GQDs后,聚合物电池的开路电压和填充因子都比未掺杂器件高。GQDs掺杂质量分数为0.15%时,形成的掺杂薄膜平整、均匀,填充因子提高了17.42%。GQDs经还原后,随还原时间的延长,填充因子FF增大。到45 min时,电池的FF基本稳定,从31.57%提高至40.80%,提高了29.24%。退火后,获得了最佳的掺杂GQDs的聚合物太阳能电池,开路电压Voc为0.54 V,填充因子FF为55.56%,光电转换效率为0.75%。  相似文献   

12.
郝志红  胡子阳  张建军  郝秋艳  赵颖 《物理学报》2011,60(11):117106-117106
研究了掺杂后poly(3,4-ethylene dioxythiophene):poly(styrenesulphonic acid)(PEDOT ∶PSS)电导率的变化以及掺杂PEDOT ∶PSS薄膜对聚合物太阳能电池器件性能的影响. 实验发现,向PEDOT ∶PSS中掺入极性溶剂二甲基亚砜(DMSO)明显提高了薄膜的电导率,掺杂后的电导率最大值达到1.25 S/cm,比未掺杂时提高了3个数量级. 将掺杂的PEDOT ∶PSS薄膜作为缓冲层应用于聚合物电池 (ITO/PEDOT ∶PSS/P3HT ∶PCBM/LiF/Al) 中,发现高电导率的PEDOT ∶PSS降低了器件的串联电阻,增加了器件的短路电流,从而提高了器件的性能. 最好的聚合物太阳能电池在100 mW/cm2的光照下,开路电压(Voc)为0.63 V,短路电流密度(Jsc)为11.09 mA·cm-2,填充因子(FF)为63.7%,能量转换效率(η)达到4.45%. 关键词: PEDOT ∶PSS 电导率 聚合物太阳能电池 能量转换效率  相似文献   

13.
重掺杂AZO透明导电薄膜的光电特性   总被引:1,自引:1,他引:0       下载免费PDF全文
以Al质量分数为2%的ZnO陶瓷靶为靶材,在氧气气氛中,采用脉冲激光沉积方法(PLD)在石英衬底表面生长了重掺杂的ZnO:Al(AZO)薄膜.通过X射线衍射仪、紫外可见分光光度计、微区拉曼光谱仪、霍尔测量仪对合成薄膜材料的晶体结构、光学、电学性质等进行了研究.结果表明:所制备的AZO薄膜呈现具有高度c轴择优取向的ZnO...  相似文献   

14.
为提升聚合物太阳能电池的光电转换效率,在有源层中掺杂PbSe量子点,研究对电池性能的影响。首先采用热化学法制备PbSe量子点,通过改变油酸的添加量及反应时间,调控PbSe量子点的尺寸及结晶性。通过透射电子显微镜和X射线衍射,对量子点进行表征,确定最佳反应条件。然后将不同质量分数的PbSe量子点掺杂至结构为ITO/ZnO/PTB7∶PC_(71)BM/MoO_3/Ag的聚合物太阳能电池中,通过J-V性能测试和紫外吸收光谱测试,分析了PbSe量子点对电池的影响机理。实验结果表明,当PbO与OA的量比为1∶2、反应时间为3 min时,可得到尺寸均匀分布在3~7 nm之间、结晶性较好的量子点,掺杂量子点质量分数为3%时,短路电流密度提升了8.37%,光电转换效率提升了37.41%,有效提升了聚合物太阳能电池的性能。  相似文献   

15.
采用水热法制备Cu~(2+)离子共掺杂的β-NaYF_4∶20%Yb~(3+),2%Er~(3+)上转换晶体。通过X射线衍射(XRD)及透射电子显微镜(TEM)数据分析,Cu~(2+)离子的掺杂不影响样品的晶相与形貌。通过荧光光谱观察到,随着Cu~(2+)离子的掺杂摩尔分数从0增加到40%,紫外到可见的上转换发光强度先增大再减小。在掺杂5%Cu~(2+)离子时,β-NaYF_4∶20%Yb~(3+),2%Er~(3+)晶体呈现出最大的上转换发光强度。这是因为低价态的Cu~(2+)离子掺杂导致F-空位的产生,降低了Er~(3+)离子周围晶体场的对称性,从而有利于上转换发光的增强。  相似文献   

16.
为提高聚合物太阳能电池的能量转换效率,将聚乙二醇(PEG)掺入PEDOT∶PSS阳极缓冲层,研究了阳极缓冲层修饰对聚合物太阳能电池性能的影响。首先研究了聚乙二醇对PEDOT∶PSS薄膜电导率的影响,发现PEG会与PEDOT和PSS相互作用,使得PEDOT链重新排布,有利于电荷载流子的传输,从而显著改善了PEDOT∶PSS薄膜的电导率,当PEDOT∶PSS中掺入体积分数为2%~4%的PEG时,可得到较大的电导率。然后,以PEG修饰的PEDOT∶PSS薄膜作为阳极缓冲层制备了聚合物太阳能电池,研究了PEG的掺入对聚合物太阳能电池性能的影响。实验发现,PEG改善的PEDOT∶PSS电导率有利于提高电池的短路电流密度和填充因子,从而改善了器件光伏性能。当PEDOT∶PSS中掺入体积分数为2%的PEG时,聚合物太阳能电池的能量转换效率最高,比未掺杂的器件提高了24.4%。  相似文献   

17.
利用金属有机物化学气相沉积技术在蓝宝石衬底表面制备了带有p-AlGaN电子阻挡层的400 nm高性能紫光InGaN多量子阱发光二极管。制作了3种紫光LED,分别带有不同p-AlGaN电子阻挡层结构:Al摩尔分数为9%的p-AlGaN电子阻挡层;Al摩尔分数为11%的p-AlGaN电子阻挡层;Al摩尔分数为20%的10对p-AlGaN/GaN超晶格电子阻挡层。带有高浓度Al电子阻挡层的紫光LED的光输出功率高于低浓度Al电子阻挡层的紫光LED。带有10对p-AlGaN/GaN超晶格电子阻挡层的紫光LED的光输出功率获得了极大的提高,在20 mA注入电流时测试得到的光输出功率为21 mW。此外,该LED同时显示了在高注入电流下接近线性的I-L特性曲线和在LED芯片表面均匀的发光强度分布。  相似文献   

18.
以Sr(NO_3)_2和NaSnO_3为原料,采用水热法成功制备了SrSnO_3∶Sm~(3+)下转换粉体,并将其与TiO_2复合作为光阳极应用于染料敏化太阳能电池(DSSC)。用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱分析仪(EDS)和荧光光谱仪(FL)对SrSnO_3∶Sm~(3+)进行表征,探讨了SrSnO_3∶Sm~(3+)掺杂量对Sr SnO_3∶Sm~(3+)/TiO_2复合光阳极组装DSSC光电性能的影响。结果表明,通过水热法成功制备了棒状、短柱状和颗粒状混合形貌的SrSnO_3∶Sm~(3+),Sr SnO_3∶Sm~(3+)通过下转换作用将紫外光转换为587 nm的黄色光,拓宽了光谱响应范围。随着SrSnO_3∶Sm~(3+)掺杂量的增加,DSSC的短路电流密度增大。当Sr SnO_3∶Sm~(3+)掺杂质量分数为3%时,短路电流密度和光电转换效率分别为10.3 m A/cm2和4.09%,与纯P25相比,分别提高了38%和25%。  相似文献   

19.
采用结晶法和低温共烧结法制备了Eu~(3+)掺杂的Y_3Al_5O_(12)∶Ce~(3+)荧光玻璃,对制备出的样品进行能量色散X射线谱和光致发光光谱测试,表明稀土离子Eu~(3+)与YAG∶Ce~(3+)荧光粉已掺入荧光玻璃。掺杂不同含量Eu_2O_3的YAG∶Ce~(3+)荧光玻璃封装成的激光照明器件在驱动电流100 mA下,经过STC-4000快速光谱仪和PMS-80可见光谱分析系统测试,掺杂质量分数1%YAG∶Ce~(3+)复合质量分数9%的Eu~(3+)的荧光玻璃封装的激光照明器件发光效率为267.1 lm/W。激光照明器件随着电流的增加,其显色指数逐渐增大,但增加幅度较小。  相似文献   

20.
采用温和的溶剂热法制备较强红光发射的NaErF4∶Yb,Gd上转换纳米晶,控制Gd~(3+)的掺杂浓度实现了晶相和尺寸可控以及上转换荧光的增强。X射线衍射谱(XRD)、透射电子显微镜图像(TEM)和上转换发射光谱结果分析表明,Gd~(3+)掺杂可以有效地促进NaErF_4纳米晶的晶相由立方相向六角相转变,并且减小纳米粒子的尺寸。随着Gd~(3+)掺杂浓度的上升,上转换荧光强度明显增大。当Gd~(3+)摩尔分数为25%时,样品的上转换荧光强度达到最大。同时,研究了在980 nm近红外激光激发下,Yb~(3+)与Er~(3+)间有效的能量传递以及上转换发光机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号