首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
近红外漫反射光谱检测赣南脐橙可溶性固形物的研究   总被引:3,自引:1,他引:3  
研究了应用可见-近红外漫反射光谱技术快速检测赣南脐橙可溶性固形物的方法。以40个赣南脐橙为标准样本,利用漫反射光谱测定法获取完整赣南脐橙的可见-近红外光光谱(350~2 500 nm),采用多种光谱校正算法,选取不同的光谱波段范围对水果样本的漫反射二阶光谱进行有效信息的提取和分析,并结合偏最小二乘法和主成分回归等定量校正方法,建立了赣南脐橙可溶性固形物的定量数学模型。实验结果为: 在361~2 488 nm波段范围内,偏最小二乘法校正模型的预测精度最好,校正模型的相关系数为0.929,校正标准偏差和预测标准偏差分别为0.517,0.592,其预测集样本的预测值与真实值的相关系数为0.791。实验结果表明:应用近红外漫反射技术对赣南脐橙可溶性固形物的快速无损检测具有可行性。  相似文献   

2.
采用高光谱成像技术结合不同的特征提取方法,实现了对草莓可溶性固形物含量的检测。通过提取154颗成熟无损伤草莓的高光谱图像的874~1 734 nm范围光谱信息,对941~1 612 nm光谱采用移动平均法(moving average,MA)进行预处理。基于残差法剔除19个异常样本后将剩余135个样本分为建模集(n=90)和预测集(n=45)。采用连续投影算法(successive projections algorithm, SPA),遗传偏最小二乘算法(genetic algorithm-partial least squares, GAPLS)结合连续投影算法(GAPLS-SPA),加权回归系数(weighted regression coefficient, Bw)以及CARS法(competitive adaptive reweighted sampling)选择特征波长分别提取14,17,24与25个特征波长,并采用主成分分析(principal component analysis, PCA)与小波变换(wavelet transform, WT)分别提取20与58个特征信息。分别基于全波段光谱、特征波长与特征信息建立PLS模型。所有模型都取得了较好的效果,基于全波段光谱的PLS模型与基于WT提取的特征信息的PLS模型的效果最优,建模集相关系数(rc)与预测集相关系数(rp)均高于0.9。结果表明高光谱成像技术结合特征提取方法可用于草莓可溶性固形物含量的检测。  相似文献   

3.
为了满足果蔬品质快速安全无损检测,基于可见-近红外漫透射原理,设计了番茄专用环形光源,自行搭建了番茄可见-近红外漫透射多品质检测系统,并以可溶性固形物含量(SSC)和总糖(TS)作为内部品质指标,对58个番茄样品进行了快速无损检测研究。基于自主搭建的系统对每个番茄进行四点的光谱采集,对平均后的光谱分别用15点SG卷积平滑(SG-Smooth)、标准正态变量变换(SNV)、多元散射校正(MSC)、一阶导数(FD)等方法进行了预处理,分别建立了SSC及TS的偏最小二乘预测模型,并对该模型进行了验证。结果表明:采用15点SG平滑预处理后的SSC预测模型校正集和预测集相关系数分别为0.995 6和0.976 0,均方根误差分别为0.052 4°Brix和0.082 3°Brix。采用SG平滑后一阶导数预处理的TS预测模型校正集和预测集相关系数分别为0.969 1和0.972 9,均方根误差分别为0.423 8%和0.454 9%。模型验证结果显示,番茄SSC和TS模型预测结果与标准理化值相关系数分别为0.985 5和0.944 9,均方根误差分别为0.066 3°Brix和0.571 5%。利用自行搭建的可见-近红外漫透射光谱检测系统完全可以实现番茄可溶性固形物及总糖含量的快速无损预测,为番茄内部品质的评价提供了实时、无损、快速的检测方法,为其在线分级提供理论基础。  相似文献   

4.
可溶性固形物(SSC)是脐橙重要内部品质之一。采用QualitySpec型光谱仪在350~1000 nm波段范围采集脐橙的可见/近红外漫透射光谱,采用CARS(competitive adaptive reweighted sampling)变量选择方法筛选出与脐橙SSC相关的重要变量,并与无信息变量消除(UVE)及连续投影算法(SPA)比较。最后,对选择的38个重要波长变量应用偏最小二乘(PLS)回归建立脐橙SSC预测模型,并对未参与建模的75个样品进行预测。研究结果表明,CARS方法优于UVE及SPA变量选择方法,能有效地筛选出重要波长变量。CARS-PLS建立的SSC预测模型优于全光谱的PLS模型,其校正集及预测集的相关系数分别为0.948和0.917,均方根误差分别为0.347%和0.394%。因此,可见/近红外漫透射光谱结合CARS方法可以预测脐橙可溶性固形物,CARS变量选择方法能有效简化预测模型和提高模型的预测精度。  相似文献   

5.
6.
黄桃碰伤和可溶性固形物高光谱成像无损检测   总被引:1,自引:0,他引:1  
黄桃在线分级时,表面损伤和可溶性固形物同时在线检测。损伤和可溶性固形物是评价黄桃品质好坏的重要指标。采用高光谱成像技术,尝试对黄桃损伤和可溶性固形物进行同时检测。利用主成分分析法,首先对高光谱图像进行主成分分析得到最佳PC(principal component)图像,其次根据PC图像中各波长对其贡献率的大小确定最佳特征波长(550和720 nm)并结合二值化,图像掩膜和阈值分割以及相关的图像处理技术对最佳光谱图像进行定性判别。其准确率最高达到94.6%,同时建立偏最小二乘定量回归模型对正常样品SSC(soluble solid content)含量进行预测,通过对模型的不断优化,实现了基于高光谱成像技术对黄桃碰伤和可溶性固形物同时检测。可溶性固形物分选准确率为79.2%。实验结果表明,利用高光谱成像技术可以实现对黄桃碰伤和可溶性固形物同时检测,该研究可以为实际在线分选提供理论依据和参考。  相似文献   

7.
水果货架期是影响水果品质的重要因素之一,快速无损检测货架期是消费者、食品加工企业日益关心的问题,为了探讨水果不同货架期的预测判别方法的可行性,以不同货架期脐橙为实验样品,运用高光谱成像技术并结合化学计量学方法对不同货架期脐橙进行了预测判别。分别采集脐橙货架期第0天、第7天、14天后的脐橙样本高光谱图像,并进行高光谱图像校正。从光谱角度,提取脐橙样本的平均光谱,每条光谱有176个波长点;从图像角度,先提取脐橙样本的RGB和HSI颜色空间中R,G,B,H,S和I特征值,得到6个分量的均值,然后提取灰度共生矩阵的能量、熵、对比度、逆差矩、相关性的5个图像纹理信息,一共11个图像特征值,并将图像特征进行归一化处理;结合光谱和图像信息,即176个原始光谱和11个图像信息一共187个特征值。利用光谱信息、图像信息、光谱和图像融合信息进行建模,分别建立偏最小二乘支持向量机(LS-SVM)和偏最小二乘判别(PLS-DA)模型。当原始176个光谱变量作为输入变量,核函数为LIN-Kernel时,LS-SVM模型预测效果最佳,预测集误判率为5.33%。当11个图像特征变量作为输入变量,核函数为LIN-Kernel时,LS-SVM模型预测效果最佳,预测集误判率较高为20%。当原始176个光谱变量和11个图像特征变量的融合特征作为输入变量,核函数为LIN-Kernel时,LS-SVM模型预测效果最佳,预测集误判率为1.33%。实验结果表明,以光谱和图像融合信息建立LS-SVM模型效果最优,提高了对不同货架期脐橙识别的正确率,可实现对不同货架期的脐橙准确有效分类识别,误判率为1.33%。利用高光谱成像技术对不同货架期脐橙进行快速判别,对消费者购买新鲜水果和水果深加工企业具有一定程度的理论指导,也为后期相关仪器研发奠定了基础。  相似文献   

8.
可见/近红外光谱法无损检测赣南脐橙可溶性固形物   总被引:10,自引:4,他引:10  
应用可见/近红外光谱法对赣南脐橙可溶性固形物进行了无损检测研究。通过主成分分析,获取光谱的有效信息,将其作为人工神经网络的输入变量进行非线性建模。90个建模样品训练结果是,样品参考值与预测值之间的相关系数为0.9147,训练均方差为0.5203;38个未知样品预测结果是:样品参考值与预测值之间的相关系数为0.9033,预测均方差为0.6964,相对预测偏差4.5709%。实验结果表明基于人工神经网络的可见/近红外光谱法无损检测赣南脐橙可溶性固形物是可行的。  相似文献   

9.
应用高光谱成像技术对不同保藏温度的灵武长枣的可溶性固形物含量进行预测模型建立。提取图像中感兴趣区域的平均光谱数据,经过不同光谱预处理后,利用连续投影法(SPA)选择特征波长,对4℃冷藏光谱提取13个特征波段(421,426,512,598,641,670,675,723,814,906,944,978,982 nm),对常温保藏光谱提取12个特征波段(425,507,555,598,673,680,685,718,809,910,954,978 nm)。对于MSC处理、MSC+SPA处理、Savitzky-Golay平滑处理和SNV 4种预处理方法,筛选出的最优预处理方法是冷藏采用MSC处理、常温采用MSC+SPA处理。对应这两种最优预处理方法,分别建立偏最小二乘法(PLSR)、支持向量机(SVM)、主成分回归(PCR)3种预测模型。在以上获得的6个预测模型中,得出冷藏、常温保藏的最优模型分别为MSCPLSR模型(R2C:0.852,RMSEC:0.940;R2P:0.857,RMSEP:0.894)和MSC+SPA-PLSR模型(R2C:0.872,RMSEC:0.866;R2P:0.787,RMSEP:1.007)。结果表明:利用高光谱成像技术,结合多种预测模型建立,能够测定不同保藏温度下的灵武长枣可溶性固形物含量,实现对灵武长枣准确快速的无损检测。  相似文献   

10.
通过设置四种不同的光源强度研究光强对近红外漫反射无损检测梨可溶性固形物的影响,对四种类别光强的光谱定性分析显示四类光谱差异微小,肉眼几乎无法辨别。在进一步的定量分析中,通过主成分分析、逐步线性回归分析以及偏最小二乘法分析的比较,主成分分析(r值跨度:0.253~0.606;RMSEC值跨度:0.549~0.614;RMSEP值跨度:0.455~0.752)与逐步线性回归分析(r值跨度:0.249~0.551;RMSEC值跨度:0.536~0.624;RMSEP值跨度:0.646~0.734)得到的模型较差。通过对光谱进行一阶求导和二阶求导预处理,主成分分析与逐步线性回归分析建模结果仍不理想。通过二阶求导预处理,偏最小二乘法所建的模型得到优化,其中相关系数r值跨度为0.947~0.970,混合模型的相关系数r值达到了0.95 7,分析结果表明光强对梨的近红外漫反射光谱无损检测可溶性固形物的影响差异不大,为光谱仪的田间作业奠定了基础。  相似文献   

11.
刘燕德  邓清 《发光学报》2015,36(8):957-961
为实现脐橙叶片叶绿素含量无损检测及其分布可视化表征,采用高光谱成像技术,结合自适应重加权算法(CARS)和连续投影算法(SPA),筛选特征光谱变量,进行脐橙叶片叶绿素含量及可视化分布研究。选取叶绿素测量位置的7×7矩形感兴趣区域,提取并计算脐橙叶片平均光谱。基于Kennard-ston方法,将148个脐橙叶片样品划分成建模集和预测集(111∶37)。采用CARS和SPA算法分别筛选出了32个和6个叶绿素特征光谱变量,用于建立偏最小二乘(PLS)回归模型。采用37个未参与建模的脐橙叶片样品评价模型的预测能力,经比较,CARS-PLS和SPA-PLS模型均优于变量筛选前的PLS模型,且CARS-PLS和SPA-PLS模型的预测能力几乎相同,其预测集相关系数分别为0.90和0.91,均方根误差分别为1.53和1.60。SPA-PLS模型计算脐橙叶片每个像素点的叶绿素含量,经伪彩色变换,绘制了脐橙叶片叶绿素含量可视化分布图。实验结果表明:变量筛选方法结合高光谱成像技术,能够实现脐橙叶片叶绿素含量无损检测及叶绿素分布可视化表达,并简化了数学模型。  相似文献   

12.
基于高光谱的GA和SPA算法对赣南脐橙叶绿素定量分析   总被引:4,自引:0,他引:4  
用遗传算法(GA)和连续投影算法(SPA)分别提取了赣南脐橙叶片高光谱图像的有效信息,对叶绿素的含量用偏最小二乘法(PLS)进行建模定量分析。高光谱图像标定后,提取感兴趣区域(ROI)的平均光谱,用GA和SPA算法分别选出了27和8条特征波长,然后用PLS对叶绿素含量建模。GA-PLS与SPA-PLS模型得到的预测集相关系数分别为0.80和0.83,均方根误差分别为2.45和2.30。结果表明:SPA-PLS模型具有较高的优势,可以结合高光谱技术对赣南脐橙叶绿素含量快速、无损的定量分析。  相似文献   

13.
以高光谱数据有效预测苹果可溶性固形物含量   总被引:4,自引:0,他引:4  
从高光谱数据中选取能够有效进行内部品质检测的特征波长,是利用高光谱成像技术进行水果品质定量分析的关键。本文采用遗传算法(GA)、连续投影算法(SPA)和GA-SPA算法分别从400~1 000 nm的苹果高光谱图像中提取特征波长,利用偏最小二乘法(PLS)、最小二乘支撑向量机(LS-SVM)和多元线性回归(MLR)建模进行苹果可溶性固形物含量(SSC)的定量分析并进行了综合比较。160个样品中,120个用于建模,40个用于预测。比较发现SPA-MLR模型获得了最好的结果,R2p,RMSEP和RPD分别为0.950 1,0.308 7和4.476 6。结果表明:SPA能够有效地用于高光谱数据的变量选择,利用SPA-MLR可建立稳健的苹果SSC预测模型,较少的有效变量和MLR模型的易解释性表明该模型在在线检测和便携式仪器开发中具有较大的应用潜力。  相似文献   

14.
基于高光谱图像技术的水果表面农药残留检测试验研究   总被引:15,自引:0,他引:15  
薛龙  黎静  刘木华 《光学学报》2008,28(12):2277-2280
以脐橙为研究对象,初步探讨了应用高光谱图像技术检测水果表面农药残留的方法.用蒸馏水把农药分别配置成1:20,1:100和1:1000倍的溶液.然后把同种不同浓度的溶液滴到10个洗净的脐橙表面,溶液量约为120 μL,200μL和400μL,脐橙表面形成一个3×3的矩阵形状.将水果放置到通风阴凉处放168 h后,拍摄图像.采集脐橙在625~725 nm范围的高光谱图像,应用主成分分析方法(PCA)获得特征波长的图像,应用第三主成分图像(PC-3)并经过适当的图像处理方法对脐橙表面的农药残留进行检测.检测结果表明,高光谱技术对检测较高浓度农药残留非常明显.  相似文献   

15.
可见光光谱检测赣南脐橙糖度的研究   总被引:8,自引:1,他引:7  
利用透射光谱测定法获取赣南脐橙的可见光光谱(400~800 nm), 采用多种校正算法, 选取不同的波段范围对透射光谱进行有效信息提取和分析,对比研究了不同因子数时不同校正方法进行糖度快速检测的影响,确定了最佳参比、最佳的波段范围、最佳光谱处理方法和用于快速检测分析的最佳校正方法。实验结果表明: 偏最小二乘法校正模型的预测精度在450~770 nm波段范围内,因子数为7时其糖度的预测精度最好,其预测集的相关系数达到了0.857, 预测标准偏差为0.562。  相似文献   

16.
基于NIR高光谱成像技术的长枣虫眼无损检测   总被引:3,自引:2,他引:3  
为了研究快速识别虫眼枣与正常枣的有效方法,利用特征波长主成分分析法结合波段比算法进行虫眼枣识别。首先,利用NIR高光谱成像系统采集130个长枣(50个正常、80个虫眼枣)图像,提取并分析不同类型长枣特征区域的平均光谱曲线,对970~1 670 nm范围内的光谱数据进行主成分分析,确定7个特征波长(990,1 028,1 109,1 160,1 231,1 285,1 464 nm)。然后,对长枣图像做主成分分析,选择PC2图像进行虫眼识别,虫眼与正常枣的识别率分别为67.5%、100%。为了进一步提高虫眼枣的识别率,采用波段比(R1231/R1109)对未识别的虫眼枣进行再次识别,识别率提高到90%。结果表明,基于NIR高光谱成像技术的检测方法对虫眼枣识别是可行的,同时也为多光谱成像技术应用于在线检测长枣品质提供了理论依据。  相似文献   

17.
高光谱成像技术无损检测赣南脐橙表面农药残留研究   总被引:1,自引:0,他引:1  
高光谱成像技术具备图像和光谱的双重优势,作为一种快速无损检测分析技术,检测过程无损、无污染和无接触。高光谱成像数据包括样本的图像信息和光谱信息,采集样本高光谱成像数据时,样本的每个像素点都有一条光谱与之对应,样本的每个波长都有一幅灰度图像与之对应。研究采用高光谱成像技术无损检测不同稀释浓度的农药在赣南脐橙样品表面残留随时间变化的关系。用蒸馏水把农药分别配置成1∶20, 1∶100和1∶1 000倍的溶液。然后把不同浓度的溶液滴到30个洗净的脐橙表面, 将涂有农药的脐橙分别放置0,4和20 d,然后采集在900~1 700 nm波长范围的高光谱成像原始数据。通过主成分分析获取930,980,1 100,1 210,1 300,1 400,1 620和1 680 nm共8个特征波长,基于这些特征波长做第二次主成分分析,应用PC-2图像并经过适当的图像处理方法对不同浓度及放置不同天数的农药残留进行无损检测。采用高光谱成像技术检测三个时间段较高稀释浓度的果面农药残留都比较明显。高光谱成像技术作为一种检测方法,可用于评价各个时间段较高浓度的农药残留。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号