首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Chemical physics letters》1987,137(3):234-240
The results of an EHT study of the chemisorption of hydrogen on Pt, Au and mixed Pt-Au clusters (up to 19 atoms) are presented. On pure Pt clusters the adsorption sites have equal stability, while on pure Au the top site is the less favoured one. When Au atoms substitute Pt, a destabilization of the metal-H bond is observed, while the insertion of Pt into an Au cluster leads to bond stabilization.  相似文献   

2.
Artificial Au atomic chains with individual Pd impurities were assembled from single metal atoms with a scanning tunneling microscope on a NiAl(110) surface. Scanning tunneling spectroscopy (STS) revealed an electronic resonance 2.15 eV above the Fermi energy localized within 4 A of single Pd atom impurities and two electronic resonances 2.25 eV and 2.95 eV above the Fermi energy localized within 8 A of Pd dimer impurities. The emergence of these localized resonances was studied by STS at each stage of the atom-by-atom assembly. Additionally, conductance images of the chains revealed delocalized electronic density oscillations in the pure Au segments of the chains.  相似文献   

3.
A multitechnique study of 6-mercaptopurine (6MP) adsorption on Au(111) is presented. The molecule adsorbs on Au(111), originating short-range ordered domains and irregular nanosized aggregates with a total surface coverage by chemisorbed species smaller than those found for alkanethiol SAMs, as derived from scanning tunneling microscopy (STM) and electrochemical results. X-ray photoelectron spectroscopy (XPS) results show the presence of a thiolate bond, whereas density functional theory (DFT) data indicate strong chemisorption via a S-Au bond and additional binding to the surface via a N-Au bond. From DFT data, the positive charge on the Au topmost surface atoms is markedly smaller than that found for Au atoms in alkanethiolate SAMs. The adsorption of 6MP originates Au atom removal from step edges but no vacancy island formation at (111) terraces. The small coverage of Au islands after 6MP desorption strongly suggests the presence of only a small population of Au adatom-thiolate complexes. We propose that the absence of the Au-S interface reconstruction results from the lack of significant repulsive forces acting at the Au surface atoms.  相似文献   

4.
Two-photon photoemission (2PPE) spectroscopy is used to examine the excited electronic structure and dynamics at polyacene/Au(111) interfaces. Image resonances are observed in all cases (benzene, naphthalene, anthrathene, tetracene, and pentacene), as evidenced by the free-electron like dispersions in the surface plane and the dependences of these resonances on the adsorption of nonane overlayers. The binding energies and lifetimes of these resonances are similar for the five interfaces. Adsorption of nonane on top of these films pushes the electron density in the image resonance away from the metal surface, resulting in a decrease in the binding energy (-0.3 eV) and an increase in the lifetime (from <20 to approximately 110 fs). The insensitivity of the image resonances to the size of polyacene molecules and the absence of photoinduced electron transfer from the metal substrate to molecular states both suggest that the unoccupied molecular orbitals are not strongly coupled to the delocalized metal states or image potential resonances.  相似文献   

5.
The adsorption of phenylthiol on the Au(111) surface is modeled using Perdew and Wang density-functional calculations. Both direct molecular physisorption and dissociative chemisorption via S-H bond cleavage are considered as well as dimerization to form disulfides. For the major observed product, the chemisorbed thiol, an extensive potential-energy surface is produced as a function of both the azimuthal orientation of the adsorbate and the linear translation of the adsorbate through the key fcc, hcp, bridge, and top binding sites. Key structures are characterized, the lowest-energy one being a broad minimum of tilted orientation ranging from the bridge structure halfway towards the fcc one. The vertically oriented threefold binding sites, often assumed to dominate molecular electronics measurements, are identified as transition states at low coverage but become favored in dense monolayers. A similar surface is also produced for chemisorption of phenylthiol on Ag(111); this displays significant qualitative differences, consistent with the qualitatively different observed structures for thiol chemisorption on Ag and Au. Full contours of the minimum potential energy as a function of sulfur translation over the crystal face are described, from which the barrier to diffusion is deduced to be 5.8 kcal mol(-1), indicating that the potential-energy surface has low corrugation. The calculated bond lengths, adsorbate charge and spin density, and the density of electronic states all indicate that, at all sulfur locations, the adsorbate can be regarded as a thiyl species that forms a net single covalent bond to the surface of strength 31 kcal mol(-1). No detectable thiolate character is predicted, however, contrary to experimental results for alkyl thiols that indicate up to 20%-30% thiolate involvement. This effect is attributed to the asymptotic-potential error of all modern density functionals that becomes manifest through a 3-4 eV error in the lineup of the adsorbate and substrate bands. Significant implications are described for density-functional calculations of through-molecule electron transport in molecular electronics.  相似文献   

6.
We study the dipole formation at the surface formed by -CH(3) and -CF(3) terminated short-chain alkylthiolate monolayers on Au(111). In particular, we monitor the change in work function upon chemisorption using density functional theory calculations. We separate the surface dipole into two contributions, resulting from the gold-adsorbate interaction and the intrinsic dipole of the adsorbate layer, respectively. The two contributions turn out to be approximately additive. Adsorbate dipoles are defined by calculating dipole densities of free-standing molecular monolayers. The gold-adsorbate interaction is, to a good degree, determined by the Au-S bond only. This bond is nearly apolar and its contribution to the surface dipole is relatively small. The surface dipole of the self-assembled monolayer is then dominated by the intrinsic dipole of the thiolate molecules. Alkylthiolates increase the work function of Au(111), whereas fluorinated alkylthiolates decrease it.  相似文献   

7.
The binding energies and lifetimes of the n=1 image resonance on Au(111) are measured as a function of n-heptane layer thickness by femtosecond time-resolved two-photon photoemission (TR-2PPE) spectroscopy. The lifetime of the image resonance dramatically increases from approximately 4 fs on clean Au(111) to 1.6 ps with three layers of n-heptane. Because the image resonance is above the L1 band edge of Au, this increase in lifetime is attributed to the tunneling barrier presented by the sigma-sigma* band gap of the n-heptane film. We use the one-dimensional dielectric continuum model (DCM) to approximate the surface potential and to determine the binding energies and the lifetimes of the image resonances. The exact solution of the DCM potential is determined in two ways: the first by wave-packet propagation and the second by using a tight-binding Green's function approach. The first approach allows band-edge effects to be treated. The latter approach is particularly useful in illustrating the similarity between TR-2PPE and conductance measurements.  相似文献   

8.
The coverage-dependent adsorption on Au(111) of a fumaramide [2]rotaxane and its components, a benzylic amide macrocycle and a fumaramide thread, is studied using high-resolution electron energy loss spectroscopy (HREELS). Up to monolayer coverage, the relative intensity of out-of-plane to in-plane phenyl ring vibrational modes indicates that the macrocycle adopts an orientation with the phenyl rings largely parallel to the surface. The formation of a chemisorption bond is evidenced by the presence of a Au-O stretching vibration. In contrast, the thread shows no evidence of chemisorption or a preferential orientation. The introduction of the thread into the macrocycle partly disrupts the film order so that the resulting chemisorbed rotaxane shows intermediate behavior with a preferential orientation up to 0.5 ML coverage. A decrease in film order and the absence of a preferred molecular orientation is observed for all three molecules at multilayer coverages. The spectral differences are addressed by molecular dynamics simulations in terms of the mobility of the phenyls of the three molecules on Au(111).  相似文献   

9.
Elucidating the chemisorption properties of CO on gold clusters is essential to understanding the catalytic mechanisms of gold nanoparticles. Gold hexamer Au(6) is a highly stable cluster, known to possess a D(3)(h) triangular ground state structure with an extremely large HOMO-LUMO gap. Here we report a photoelectron spectroscopy (PES) and quasi-relativistic density functional theory (DFT) study of Au(6)-CO complexes, Au(6)(CO)(n)(-) and Au(6)(CO)(n) (n = 0-3). CO chemisorption on Au(6) is observed to be highly unusual. While the electron donor capability of CO is known to decrease the electron binding energies of Au(m)(CO)(n)(-) complexes, CO chemisorption on Au(6) is observed to have very little effect on the electron binding energies of the first PES band of Au(6)(CO)(n)(-) (n = 1-3). Extensive DFT calculations show that the first three CO successively chemisorb to the three apex sites of the D(3)(h) Au(6). It is shown that the LUMO of the Au(6)-CO complexes is located in the inner triangle. Thus CO chemisorption on the apex sites (outer triangle) has little effect on this orbital, resulting in the roughly constant electron binding energies for the first PES band in Au(6)(CO)(n)(-) (n = 0-3). Detailed molecular orbital analyses lead to decisive information about chemisorption interactions between CO and a model Au cluster.  相似文献   

10.
We studied the interaction between benzene thiol and thiolate molecules, and gold clusters made of 1 to 3 atoms, by means of ab initio density functional theory in the local density approximation. We find that the thiolate is energetically more stable than the thiol, however the process of detachment of H from the thiol appears to be possibly mediated by the intermediate step of H chemisorption on Au. Cleavage of the S-H bond is accompanied by a 90 degrees rotation of the molecule around the S-Au bond, showing a strong steric specificity. Such a rotation is induced by the relative energy shift of the S atom p orbitals with respect to the benzene pi ring and the Au d orbitals. By analyzing the correlation of the bond energy, bond lengths, and HOMO-LUMO gap with the number of S-Au bonds, we find that the thiolate S atom appears to prefer a low-coordination condition on Au clusters.  相似文献   

11.
Selenophene (C4H4Se) monolayers on Au(1 1 1) were prepared by two different methods: ultrahigh vacuum (UHV) and atmospheric vapor adsorption method. Near-edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS) results clearly indicate that the two monolayers are in different chemical forms; selenophene is molecularly adsorbed under UHV condition, while it is dissociatively chemisorbed via the C–Se bond cleavage under atmospheric condition. The dissociative chemisorption under atmospheric condition is interpreted in terms of the trapping mediated adsorption in the presence of a high-pressure ambient gas phase.  相似文献   

12.
Smaller nonmetallic nanoparticles are more inert: Metal–insulator transition of Au nanoparticles on silica is closely related to the metal–support charge transfer, which has a strong influence on chemisorption reactivity of Au. Smaller nonmetallic Au nanoparticles are more resistant towards butanethiol chemisorption (see picture and graph).

  相似文献   


13.
The activation of dioxygen is a key step in CO oxidation catalyzed by gold nanoparticles. It is known that small gold cluster anions with even-numbered atoms can molecularly chemisorb O(2) via one-electron transfer from Au(n)(-) to O(2), whereas clusters with odd-numbered atoms are inert toward O(2). Here we report spectroscopic evidence of two modes of O(2) activation by the small even-sized Au(n)(-) clusters: superoxo and peroxo chemisorption. Photoelectron spectroscopy of O(2)Au(8)(-) revealed two distinct isomers, which can be converted from one to the other depending on the reaction time. Ab initio calculations show that there are two close-lying molecular O(2)-chemisorbed isomers for O(2)Au(8)(-): the lower energy isomer involves a peroxo-type binding of O(2) onto Au(8)(-), while the superoxo chemisorption is a slightly higher energy isomer. The computed detachment transitions of the superoxo and peroxo species are in good agreement with the experimental observation. The current work shows that there is a superoxo to peroxo chemisorption transition of O(2) on gold clusters at Au(8)(-): O(2)Au(n)(-) (n = 2, 4, 6) involves superoxo binding and n = 10, 12, 14, 18 involves peroxo binding, whereas the superoxo binding re-emerges at n = 20 due to the high symmetry tetrahedral structure of Au(20), which has a very low electron affinity. Hence, the two-dimensional (2D) Au(8)(-) is the smallest anionic gold nanoparticle that prefers peroxo binding with O(2). At Au(12)(-), although both 2D and 3D isomers coexist in the cluster beam, the 3D isomer prefers the peroxo binding with O(2).  相似文献   

14.
通过密度泛函理论研究了Ag、Au、Pt原子在完美和点缺陷(包括N掺杂、B掺杂、空位点缺陷)石墨烯上的吸附以及这些体系的界面性质.研究表明Ag、Au不能在完美的石墨烯上吸附,N、B掺杂增强了三种金属与石墨烯之间的相互作用.而空位点缺陷诱发三种金属在石墨烯上具有强化学吸附作用.通过电子结构分析发现,N掺杂增强了Au、Pt与C形成的共价键,而Au、Ag与B形成了化学键.空位点缺陷不仅是金属原子的几何固定点,同时也增加了金属原子和碳原子之间的成键.增强贵金属原子和石墨烯相互作用的顺序是:空位点缺陷>>B掺杂>N掺杂.  相似文献   

15.
The chemisorption of the undissociated CH3SH molecule on the Au(111) surface has been studied at 5 K using scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. The molecule was found to adsorb on atop Au sites on the defect-free surface. CH3SH undergoes hindered rotation about the Au-S bond on the defect-free surface which is seen in STM as a time-averaged 6-fold pattern. The pattern suggests that the potential minima directions occur for the rotating molecule at the six hollow sites surrounding the atop adsorption site. The barrier for rotation, obtained by DFT calculations, is approximately 0.1 kcal.mol(-1). At low coverages, preferential adsorption occurs at defect sites in the surface, namely, the herringbone "elbows" and random atomic step sites. Molecules adsorbed on these sites do not exhibit rotational freedom.  相似文献   

16.
17.
Experimental and theoretical evidence is presented for the nondissociative chemisorption of O2 on free Au cluster anions (Aun-, n=number of atoms) with n=2, 4, 6 at room temperature, indicating that the stabilization of the activated di-oxygen species is the key for the unusual catalytic activities of Au-based catalysts. In contrast to Aun- with n=2, 4, 6, O2 adsorbs atomically on Au monomer anions. For the Au monomer neutral, calculations based on density functional theory reveal that oxygen should be molecularly bound. On Au dimer and tetramer neutrals, oxygen is molecularly bound with the O-O bond being less activated with respect to their anionic counterparts, suggesting that the excess electron in the anionic state plays a crucial role for the O-O activation. We demonstrate that interplay between experiments on gas phase clusters and theoretical approach can be a promising strategy to unveil mechanisms of elementary steps in nanocatalysis.  相似文献   

18.
《中国化学会会志》2017,64(11):1308-1315
In this study, the galvanic displacement reaction between silver and AuCl4 was carried out to synthesize a series of silver nanowire (Ag NW) @ gold nanoparticle (Au NP) hybrid nanowires. The influence of Ag NW @ Au NP hybrid nanowires on the fluorescence properties of the poly (3‐hexylthiophene) (P3HT) was investigated. The particle sizes of Au NPs on the hybrid nanowires could be adjusted by varying the reaction time and the concentration of the HAuCl4 solution. Furthermore, steady‐state fluorescence measurements showed that the fluorescence intensity of the P3HT films was higher on various Ag NW @ Au NP hybrid nanowires compared to that on a bare silicon substrate. This was due to the increase in the intensity of electromagnetic field by the localized surface plasmon resonances of Au NPs and surface plasmon polaritons of Ag NWs from the hybrid nanowires. The results were further confirmed by the Raman spectra of the P3HT films on different substrates.  相似文献   

19.
Dissociative electron attachment to 1,2,3,5-tetra-O-acetyl-beta-D-ribofuranose (TAR) is studied in a crossed electron-molecular beam experiment with mass spectrometric detection of the observed fragment ions. Since in TAR acetyl groups are coupled at the relevant positions to the five membered ribose ring, it may serve as an appropriate model compound to study the response of the sugar unit in DNA towards low energy electrons. Intense resonances close to 0 eV are observed similar to the pure gas phase sugars (2-deoxyribose, ribose, and fructose). Further strong resonances appear in the range of 1.6-1.8 eV (not present in the pure sugars). Based on calculations on transient anions adopting the stabilization method, this feature is assigned to a series of closely spaced shape resonances of pi* character with the extra electron localized on the acetyl groups outside the ribose ring system. Further but weaker resonant contributions are observed in the range of 7-11 eV, representing core excited resonances and/or sigma* shape resonances. The decomposition processes involve single bond ruptures but also more complex reactions associated with substantial rearrangement. The authors hence propose that the sugar unit in DNA plays an active role in the molecular mechanism towards single strand breaks induced by low energy electrons.  相似文献   

20.
The catalytic oxidation of CO was performed over Au/TiO(2) under UV irradiation in the presence of H(2) in different reaction systems. It was found that the introduction of H(2) enhanced the CO thermocatalytic oxidation in a CO pre-introduced system (CO/O(2)vs. CO/H(2)/O(2)), but suppressed that in an O(2) pre-introduced (O(2)/CO vs. O(2)/H(2)/CO) system. Although the CO oxidation in both CO/H(2)/O(2) and O(2)/H(2)/CO systems could be remarkably enhanced under UV irradiation, the oxidation of H(2) was suppressed under UV irradiation. It was proposed that the dissociative chemisorption H ([triple bond]Ti-H) at surface oxygen vacancy sites of TiO(2) could act as both the electron-acceptors for the photogeneration electrons and the electron-donors for the chemisorbed O(2) at TiO(2), and thus enhance the CO oxidation during the coinstantaneous process of thermocatalysis and photocatalysis. The suppression of H(2) thermocatalytic oxidation under UV irradiation might be ascribed to the electron transfer effect, i.e., the dissociative chemisorption H on Au (Au-H) could be desorbed at the H(2) molecule via accepting the photogenerated electrons from TiO(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号