共查询到20条相似文献,搜索用时 39 毫秒
1.
A. Rostamnejadi M. VenkatesanP. Kameli H. SalamatiJ.M.D. Coey 《Journal of magnetism and magnetic materials》2011,323(16):2214-2218
The La0.67Sr0.33MnO3 composition prepared by sol-gel synthesis was studied by dc magnetization measurements. A large magnetocaloric effect was inferred over a wide range of temperature around the second-order paramagnetic-ferromagnetic transition. The change of magnetic entropy increases monotonically with increasing magnetic field and reaches the value of 5.15 J/kg K at 370 K for Δμ0H=5 T. The corresponding adiabatic temperature change is 3.3 K. The changes in magnetic entropy and the adiabatic temperature are also significant at moderate magnetic fields. The magnetic field induced change of the specific heat varies with temperature and has maximum variation near the paramagnetic-ferromagnetic transition. The obtained results show that La0.67Sr0.33MnO3 could be considered as a potential candidate for magnetic refrigeration applications above room temperature. 相似文献
2.
Nabil Kallel Sami Kallel Ahmed Hagaza Mohamed Oumezzine 《Physica B: Condensed Matter》2009,404(2):285-288
Single-phase polycrystalline samples of La0.7Sr0.3Mn1-xCrxO3 with nominal composition of x=0.00, 0.20, 0.40 and 0.50 were prepared by a conventional solid-state reaction method in air. Investigations of magnetization were carried out in the temperature range 5-400 K and magnetic field range 0-8 T. It was found that the Curie temperature TC decreases with increasing x and the maximum magnetic entropy change (−ΔSM) for x=0.20 is ∼1.203 and ∼2.653 J/kg K, respectively for 2 and 6 T magnetic field near the temperature of 280 K. 相似文献
3.
M. Koubaa W. Cheikh-Rouhou Koubaa A. Cheikhrouhou 《Journal of magnetism and magnetic materials》2009,321(21):3578-3584
The effects of monovalent doping on the crystallographic, magnetic and magnetocaloric properties of La0.65Ba0.3M0.05MnO3 (M=Na, Ag, K) powder samples, elaborated using the solid state reaction method at high temperature, have been investigated. In our three samples the Mn4+ amount remains constant equal to 40%. The Rietveld refinement of the X-ray powder diffraction shows that all our synthesized samples are single phase and crystallize in the distorted rhombohedral system with R3¯c space group. All our studied samples undergo a paramagnetic–ferromagnetic transition with decreasing temperature. Using the Arrott plot, the second-order transition Curie temperature TC for M=Na, Ag and K is found to be 310, 300 and 290 K, respectively. The magnetic entropy change, deduced from isothermal magnetization curves, exhibits a maximum |ΔSMMax| of about 2.65, 2.82 and 2.66 J/kg K for M=Na, Ag and K, respectively, in a magnetic applied field change of 5 T. Although these values are modest, the magnetocaloric effect extends over a large temperature range leading to an important value of the relative cooling power (RCP). The RCP values exhibit a nearly linear dependence with the magnetic applied field. The refrigeration capacity in a magnetic applied field of 1 T is found to be 28.8, 27.8 and 25.6 J/kg for M=Na, Ag and K compounds. 相似文献
4.
We present the temperature dependence of La0.85Ag0.15MnO3 resistivity in the temperature interval between 77 and 340 K and magnetic fields up to 26 kOe. We offer a method of separating tunnel magnetoresistance from total magnetoresistance. A change in both the magnetic entropy, which is caused by the magnetocaloric effect (MCE), and the magnetoresistance are shown to be connected through a simple relationship to La0.85Ag0.15MnO3. 相似文献
5.
Ali Ekber Irmak Atilla Coskun Selcuk Akturk Yusuf Samancioglu Burak M. Kaynar 《Journal of magnetism and magnetic materials》2010,322(8):945-951
La1−xAgxMnO3 samples were synthesized by standard sol-gel method with Ag concentrations of x=0.05 and 0.25. The samples from each concentration were pressed and sintered at 1000, 1200 and 1400 °C for 24 h in air for a systematic study. They were examined structurally by Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) with Energy Dispersive Spectroscopy (EDS) and X-ray Diffraction (XRD) and magnetically by Magnetic Properties Measurements System (MPMS). AFM and SEM analyses show that surface morphology changes with Ag concentration and sintering temperature (TS). It was observed that high temperature sintering leads Ag to leave material as determined from EDS analyses. XRD spectra exhibited that the crystal structure changes with Ag concentration while showing pronounced change with the sintering temperature. From the magnetic measurements, the Curie temperatures (TC) and the isothermal magnetic entropy changes (−ΔSM) were calculated. It was observed that TC increases with Ag concentration and decreases with TS. The maximum −ΔSM was calculated to be 7.2 J/kg K under the field change of 5 T for the sample sintered at 1000 °C with x=0.25. 相似文献
6.
The hydrothermal synthesis and magnetic entropy change for the perovskite manganite La0.5Ca0.3Sr0.2MnO3 have been studied. The La0.5Ca0.3Sr0.2MnO3 can be produced as phase-pure, crystalline powders in one step from solutions of metal salts in aqueous potassium hydroxide solution at a temperature of 513 K in 72 h. Scanning electron microscopy shows that the materials are made up of cuboid-shaped particles in typical dimension of 4.0×2.5×1.6 μm. Heat treatment can improve the magnetocaloric effect for the hydrothermal sample. The maximum magnetic entropy change ΔSM for the as-prepared sample is 0.88 J kg−1 K−1 at 315 K for a magnetic field change of 2.0 T. It increases to 1.52 J kg−1 K−1, near its Curie temperature (317 K) by annealing the sample at 1473 K for 6 h. The hydrothermal synthesis method is a feasible route to prepare high-quality perovskite material for magnetic refrigeration application. 相似文献
7.
The relationship of electrical and thermal properties of manganites has been traced through the analysis of temperature dependence of the La0.85Ag0.15MnO3 resistivity. The discussion of results has been held on the basis of percolation theory in the framework of the phase-layered manganite. A behavior of the heat capacity, as well as a change in magnetic entropy can be predicted from the analysis of temperature and magnetic-field dependences of resitivity. 相似文献
8.
Juan Zhao 《Journal of magnetism and magnetic materials》2009,321(19):2977-2980
In this paper, magnetic property and magnetocaloric effect (MCE) in nanoparticles perovskite manganites of the type (La0.67−xGdx)Sr0.33MnO3 (x=0.10, 0.15, 0.20) synthesized by using an amorphous molecular alloy as precursor have been reported. From the magnetic measurements as function of temperature and magnetic applied field, we have discovered that the Curie temperature (TC) of the prepared samples is found to be strongly dependent on Gd content. The Curie temperature of samples is 358.4, 343.2, and 285.9 K for x=0.1, 0.15, and 0.2, respectively. A large magnetocaloric effect close to TC has been observed with a maximum of magnetoentropy change in all the samples, ∣ΔSM∣max of 1.96 and 4.90 J/kg K at 2 and 5 T, respectively, for a substitution rate of 0.15. In addition, the maximum magnetic entropy change observed for samples with different concentration of Gd, exhibits a linear dependence with the applied high magnetic field. These results suggest that (La0.67−x Gdx)Sr0.33MnO3 (x=0.10, 0.15, 0.20) compounds could be a suitable candidate as working substance in magnetic refrigeration near room temperature. 相似文献
9.
We investigated magnetocaloric effect in La0.45Pr0.25Ca0.3MnO3 by direct methods (changes in temperature and latent heat) and indirect method (magnetization isotherms). This compound undergoes a first-order paramagnetic to ferromagnetic transition with TC=200 K upon cooling. The paramagnetic phase becomes unstable and it transforms into a ferromagnetic phase under the application of magnetic field, which results in a field-induced metamagnetic transition (FIMMT). The FIMMT is accompanied by release of latent heat and temperature of the sample as evidenced from differential scanning calorimetry and thermal analysis experiments. A large magnetic entropy change of ΔSm=−7.2 J kg−1 K−1 at T=212.5 K and refrigeration capacity of 228 J kg−1 are found for a field change of ΔH=5 T. It is suggested that destruction of magnetic polarons and growth of ferromagnetic phase accompanied by a lattice volume change with increasing magnetic field is responsible for the large magnetocaloric effect in this compound. 相似文献
10.
A.M. AlievA.G. Gamzatov A.B. BatdalovA.S. Mankevich I.E. Korsakov 《Physica B: Condensed Matter》2011,406(4):885-889
A technology of obtaining the single-phase ceramic samples of La1−xKxMnO3 manganites and the dependence of their structural parameters on the content of potassium has been described. Magnetocaloric effect (MCE) in the obtained samples has been measured by two independent methods: classical direct methodic and a method of magnetic field modulation. The values of MCE obtained by both methods substantially differ. The explanation of the observed divergences is given. The correlation between the level of doping and MCE value has been defined. The value of TC determined by the MCE maximum conforms with the literature data obtained by other methods. 相似文献
11.
N.G. Bebenin R.I. ZainullinaV.V. Ustinov Ya.M. Mukovskii 《Journal of magnetism and magnetic materials》2012,324(6):1112-1116
The effect of magnetic inhomogeneity on magnetic, magnetocaloric, and transport properties of the colossal magnetoresistance manganites with first order ferromagnetic-to-paramagnetic phase transition is studied. The experiments were performed on the single-crystalline samples of La0.6Pr0.1Ca0.3MnO3. The inhomogeneity is described by the Curie temperature distribution function, which is found from the magnetization data. The temperature dependence of the magnetic field induced change in the entropy is shown to be determined by the distribution function and the shift of the transition temperature in a magnetic field. Similarly, magnetoresistance in the transition region is determined by the resistivity at H=0 and the shift of the transition temperature. The maximum entropy change as well as maximum magnetoresistance can be achieved in the magnetic field of order δTC/BM where δTC is the transition width and BM is the rate of change of the Curie temperature with magnetic field.Our approach to analysis of the effects of inhomogeneity is general and therefore can be used for all compounds with the first order magnetic phase transition. 相似文献
12.
Jiyu Fan Li Pi Lei ZhangWei Tong Langsheng LingBo Hong Yangguang ShiWeichun Zhang Di LuYuheng Zhang 《Physica B: Condensed Matter》2011,406(11):2289-2292
In this paper, we have studied the magnetic and magnetocaloric properties of the perovskite manganite Pr0.55Sr0.45MnO3. It shows a sharp paramagnetic-ferromagnetic phase transition at 291 K and possesses a moderate magnetic entropy change near room temperature. In addition, a large relative cooling power (143.64 J/kg) and a wide temperature range (84 K) have been found in this material. Compare with the Landau model, we find that the itinerant electrons mainly contribute the larger magnetic entropy change at paramagnetic region. 相似文献
13.
Li-Qin Yan Fen Wang Yuelei Zhao Tao Zou Jun Shen Young Sun 《Journal of magnetism and magnetic materials》2012
The exchange bias phenomenon has been investigated in multiferroic Eu0.75Y0.25MnO3. The material shows a weak ferromagnetism with cone spin configuration induced by external magnetic field below 30 K. Consequently, the electric polarization coming from the cycloid spin order below 30 K can be suppressed by external magnetic fields. The magnetic hysteresis loops after cooling in a magnetic field exhibit characteristics of exchange bias below the spin glassy freezing temperature (Tg)∼16 K. The exchange bias field, coercivity field, and remanent magnetization increase with increasing cooling magnetic field. The exchange bias effect is ascribed to the frozen uncompensated spins at the antiferromagnetism/weak ferromagnetism interfaces in the spin-glass like phase. 相似文献
14.
S.K. BarikC. Krishnamoorthi R. Mahendiran 《Journal of magnetism and magnetic materials》2011,323(7):1015-1021
We have studied the effect of Fe substitution on magnetic and magnetocaloric properties in La0.7Sr0.3Mn1−xFexO3 (x=0.05, 0.07, 0.10, 0.15, and 0.20) over a wide temperature range (T=10-400 K). It is shown that substitution by Fe gradually decreases the ferromagnetic Curie temperature (TC) and saturation magnetization up to x=0.15 but a dramatic change occurs for x=0.2. The x=0.2 sample can be considered as a phase separated compound in which both short-range ordered ferromagnetic and antiferromagnetic phases coexist. The magnetic entropy change (−ΔSm) was estimated from isothermal magnetization curves and it decreases with increase of Fe content from 4.4 J kg−1 K−1 at 343 K (x=0.05) to 1.3 J kg−1 K−1 at 105 K (x=0.2), under ΔH=5 T. The La0.7Sr0.3Mn0.93Fe0.07O3 sample shows negligible hysteresis loss, operating temperature range over 60 K around room temperature with refrigerant capacity of 225 J kg−1, and magnetic entropy of 4 J kg−1 K−1 which will be an interesting compound for application in room temperature refrigeration. 相似文献
15.
Zhao Juan 《Journal of magnetism and magnetic materials》2009,321(1):43-46
In this paper, nanosized particles of (La0.47Gd0.2)Sr0.33MnO3 perovskite-type oxides were successfully synthesized at a relatively low calcinated temperature at 800 °C for 10 h using amorphous molecular alloy as precursor. X-ray diffraction (XRD) and electron diffraction (ED) revealed that the resulting product is of pure single-phase rhombohedral structure. The Curie temperature TC and magnetic entropy change (MCE) in (La0.47Gd0.2)Sr0.33MnO3 polycrystalline nanoparticles are determined and compared to those of similar systems prepared by the conventional solid-state reaction method. The Curie temperature TC is shifted to 298 k, and a relatively large MCE with a broad peak around Curie temperature is observed in (La0.47Gd0.2)Sr0.33MnO3 polycrystalline particles. These results suggested that this material is a suitable candidate as working substance in magnetic refrigeration near room temperature. 相似文献
16.
Polycrystalline perovskite La0.67Ca0.33MnO3 was synthesized by a sol–gel method. Its adiabatic temperature change ΔTad induced by a magnetic field change was measured directly. At 268 K, near its Curie temperature TC, ΔTad of La0.67Ca0.33MnO3 induced by a magnetic field change of 2.02 T reaches 2.4 K. The latent heat Q and magnetic entropy change −ΔSM induced by a magnetic field change were calculated from the temperature dependence of ΔTad and zero-field heat capacity Cp. The maximum values of Q and −ΔSM in La0.67Ca0.33MnO3 induced by a magnetic field change of 2.02 T are 1.85 J g−1 and 6.9 J kg−1 K−1, respectively. The former is larger than the phase transition latent heat of heating or cooling, which is about 1.70 J g−1. 相似文献
17.
Series of polycrystalline manganese perovskite oxides La0.7−xNdxPb0.3MnO3 (x=0, 0.05, and 0.1) are prepared by the sol-gel technique, La0.65Nd0.05Pb0.3MnO3 were representatively investigated because the peculiar double resistivity peaks were found; the maximum magnetic entropy change ΔSH=−2.03 J/kg K and its good refrigerant capacity 71.05 J/kg around room temperature were obtained under 9 kOe magnetic field variation. The expected double peaks of magnetocaloric effect had not occurred since magnetic entropy change originated from the differential coefficient of magnetic moment to temperature; the relatively well refrigerant capacity possibly results from the faint magnetic inhomogeneity mixed in the double exchange strong magnetic signal. 相似文献
18.
We demonstrated that La2/3Sr1/3MnO3 sintered manganite could exhibit a magnetoreactance ΔX/X0 of −25.5% at 100 kHz, a giant magnetoimpedance ΔZ/Z0 of −20% at 1-2 MHz and a giant AC magnetoresistance ΔR/R0 of −39.3% at 5 MHz under a very low field of 300 Oe at room temperature, whereas the DC magnetoresistance Δρ/ρ0 was −3.95% under H=10 kOe and only about −0.18% under H=300 Oe. Large field-induced change of real and imaginary circular permeabilities (Δμ′?/μ′?(0) and Δμ″?/μ″?(0)) were obtained for La2/3Sr1/3MnO3 sintered manganite. The giant magnetoreactance (giant magneto-inductive effect) at very low frequencies originates from the field induced change of transverse permeability. At 100 kHz under H=300 Oe, La2/3Sr1/3MnO3 sintered manganite has Δμ′?/μ′?(0)=−25.8% and Δμ″?/μ″?(0)=−10.9%. The values of ΔR/R0 and ΔZ/Z0 are very small under 300 Oe at 100 kHz. The giant magnetoimpedance at high frequencies mainly originates from the large transverse permeability change induced by DC magnetic fields, via the penetration depth. Under H=300 Oe, La2/3Sr1/3MnO3 sintered manganite presents values of Δμ′?/μ′?(0)=−24.9%, Δμ″?/μ″?(0)=−49.8% at 1 MHz, and Δμ′?/μ′?(0)=−21.2%, Δμ″?/μ″?(0)=−58.2% at 5 MHz. 相似文献
19.
R. Tetean I.G. Deac E. Burzo A. Bezergheanu 《Journal of magnetism and magnetic materials》2008,320(14):e179-e182
Structural, magnetic, magnetoresistance and magnetocaloric studies on La2/3Sr1/3Mn1−xCoxO3 compounds were reported. The samples were prepared by the conventional ceramic method. X-ray analysis showed the presence of one phase only, in all studied samples. From electrical resistance measurements it was found that the samples show large negative magnetoresistance behavior. The magnetic measurements were performed in a large temperature range, 4.2–750 K and external magnetic fields up to 5 T. The adiabatic magnetic entropy changes, |ΔS|, were determined from magnetization data. Large magnetocaloric effect (MCE) has been obtained in all studied samples. 相似文献
20.
Hangfu Yang Pengyue ZhangQiong Wu Hongliang GeMinxiang Pan 《Journal of magnetism and magnetic materials》2012
The influence of monovalent doping on the magnetocaloric effect (MCE) and refrigerant capacity or relative cooling power (RCP) of Pr0.5Sr0.3M0.2MnO3 (M=Na, Li, K and Ag) materials has been investigated. A large magnetocaloric effect was inferred over a wide range of temperature around the second order paramagnetic–ferromagnetic transition. The maximum magnetic entropy changes (ΔSM) reached 1.8, 2.2, 1.6 and 2.1 J/kg K and the relative cooling power (RCP) approached 58.9, 59.3, 69.6 and 54.6 J/kg for Na, Li, K and Ag doped materials in the magnetic change of 15 kOe, respectively. According to the results determined by the Maxwell relation, the magnetic entropy change fits well with the Landau theory of phase transition above TC for Pr0.5Sr0.3Li0.2MnO3. The large magnetic entropy change induced by low magnetic field suggested that these materials are beneficial for practical applications. 相似文献