首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
具有条纹磁畴结构的磁性薄膜表现出面内转动磁各向异性,对于解决高频电子器件的方向性问题起着至关重要的作用.本文采用射频磁控溅射的方法,研究了NiFe薄膜的厚度、溅射功率密度、溅射气压等制备工艺参数对条纹磁畴结构、面内静态磁各向异性、面内转动磁各向异性、垂直磁各向异性的影响规律.研究发现,在功率密度15.6 W/cm~2与溅射气压2 mTorr(1 Torr=1.33322×102Pa)下生长的NiFe薄膜,表现出条纹磁畴的临界厚度在250 nm到300 nm之间.厚度为300 nm的薄膜比250 nm薄膜的垂直磁各向异性场增大近一倍,从而磁矩偏离膜面形成条纹磁畴结构,并表现出面内转动磁各向异性.高溅射功率密度可以降低薄膜出现条纹磁畴的临界厚度.在相同功率密度15.6 W/cm~2下生长300 nm的NiFe薄膜,随着溅射气压由2 mTorr增大到9 mTorr,NiFe薄膜的垂直磁各向异性场逐渐由1247.8 Oe(1 Oe=79.5775 A/m)增大到3248.0 Oe,面内转动磁各向异性场由72.5 Oe增大到141.9 Oe,条纹磁畴周期从0.53μm单调减小到0.24μm.NiFe薄膜的断面结构表明柱状晶的形成是表现出条纹磁畴结构的本质原因,高功率密度下低溅射气压有利于柱状晶结构的形成,表现出规整的条纹磁畴结构,高溅射气压会导致柱状晶纤细化,面内转动磁各向异性与面外垂直磁各向异性增强,条纹磁畴结构变得混乱.  相似文献   

2.
The influence of Tb25Fe61Co14 thin film thicknesses varying from 2 to 300 nm on the structural and magnetic properties has been systematically investigated by using of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, magnetization, and magneto-optic Kerr effect microscopy measurements. Thin film growth mechanism is pursued and controlled by ex-situ X-ray refractometry measurements. X-ray diffraction studies reveal that the Tb25Fe61Co14 films are amorphous regardless of thin films thicknesses. The magnetic properties are found to be strongly related to thickness and preferred orientation. With an increase in film thickness, the easy axis of magnetization is reversed from in-plane to out-of-plane direction. The change in the easy axes direction also affects the remanence, coercivity and magnetic anisotropy values. The cause for the magnetic anisotropy direction change from in-plane to out-of-plane can be related to the preferred orientation of the thin film which depends on the large out-of-plane coercivity and plays an important role in deciding the easy axes direction of the films. According to our results, up to the 100 nm in-plane direction is dominated over the whole system under major Fe-Fe interaction region, after that point, the magnetic anisotropy direction change to the out-of-plane under major Tb-Fe/Tb-Co interaction region and preferred orientation dependent perpendicular magnetic anisotropic properties become more dominated with 2.7 kOe high coercive field values.  相似文献   

3.
The magnetic properties of FeNiSm thin films with different thicknesses, different Ta interlayer thicknesses and different numbers of Ta interlayers were investigated. The single layer FeNiSm shows in-plane uniaxial anisotropy at a thickness below critical value, but shows weak perpendicular anisotropy with a stripe domain structure at thickness above the critical value. Experiments indicate that one or more Ta interlayers inserted into thick FeNiSm films with weak perpendicular anisotropy were effective not only in canceling the perpendicular anisotropy, but also in recovering the in-plane uniaxial anisotropy. Blocking of the columnar growth of FeNi grains by the Ta interlayer is considered to be responsible for this spin reorientation phenomenon. Moreover, the magnetization reversal mechanism in FeNiSm films with uniaxial anisotropy can be ascribed to coherent rotation when the applied field is close to the hard axis and to domain-wall unpinning when the applied field is close to the easy axis. The dynamic magnetic properties of FeNiSm films with uniaxial anisotropy were investigated in the frequency range 0.1-5 GHz. The degradation of the soft magnetic properties of magnetic thin films due to the growth of columnar grains can be avoided by insertion of a Ta interlayer.  相似文献   

4.
A lattice model is proposed to describe the stripe domain sructure in a magnetic ultrathin film that consists of only a few or tens of monolayers and has a perpendicular anisotropy.The dipo;ar energies of the perpendicular and in-plane uniform magnetic states and the stripe domain structures in a magnetic ultrathin film are calculated separately using Ewald's lattice summation method. The thickness dependence of the stripe domain structure is investigated, and the stability of the stripe dimain structure is discussed. The results show that for magnetic ultrathin films the stripe dimain structure may have sensitive dependence on their thickness.  相似文献   

5.
An in-plane magnetic anisotropy of FePt film is obtained in the MgO 5 nm/FePt t nm/MgO 5 nm films (where t=5, 10 and 20 nm). Both the in-plane coercivity (Hc∥) and the perpendicular magnetic anisotropy of FePt films are increased when introducing an Ag-capped layer instead of MgO-capped layer. An in-plane coercivity is 3154 Oe for the MgO 5 nm/FePt 10 nm/MgO 5 nm film, and it can be increased to 4846 Oe as a 5 nm Ag-capped layer instead of MgO-capped layer. The transmission electron microscopy (TEM)-energy disperse spectrum (EDS) analysis shows that the Ag mainly distributed at the grain boundary of FePt, that leads the increase of the grain boundary energy, which will enhance coercivity and perpendicular magnetic anisotropy of FePt film.  相似文献   

6.
We employ superconducting quantum interference device magnetometry to study the thickness dependence of in-plane and out-of-plane magnetic anisotropic properties of Fe films grown on high-index GaAs(113)A substrates by molecular beam epitaxy. The evolution of the in-plane magnetic anisotropy with film thickness is distinguished into two regions. First, for Fe film thicknesses ≤50 MLs, we observe an in-plane uniaxial magnetic anisotropy with the easy axis along the in-plane 〈332̄〉 axes. Second, for Fe film thicknesses ≥70 MLs, we observe a four-fold magnetic anisotropy with the easy axis along the in-plane 〈031̄〉 axes. The existence of an out-of-plane perpendicular magnetic anisotropy is also detected in ultrathin Fe films. Similar to Fe on GaAs(001), our results provide evidence for the interfacial origin of the in-plane uniaxial and out-of-plane perpendicular magnetic anisotropy. Both the uniaxial and the perpendicular interface anisotropy are found to be independent of the epitaxial orientation and are hence an intrinsic property of the Fe/GaAs interface. PACS 75.70.-i; 75.50.Bb; 81.15.Hi  相似文献   

7.
The magnetic microstructures and magnetotransport properties in granular CoxAg1-x films with 17%≤x≤62% were studied. Magnetic force microscopy (MFM) observations showed the presence of magnetic stripe domains in as-deposited samples with x≥45% and the evolution of the magnetic domain patterns to in-plane domains with annealing. A perpendicular magnetic anisotropy as high as about 8×105 ergs/cc for as-deposited Co62Ag38 and about 6×105 ergs/cc for as-deposited Co45Ag55 was observed by magnetization and torque measurements. With increasing annealing temperature, the perpendicular magnetic anisotropy became negative. The origin of the perpendicular magnetic anisotropy may be attributed to a rhombohedral distortion of the cubic cell due to residual substrate-film stresses. The magnetic stripe domains are the consequence of the interplay of the indirect or direct exchange, perpendicular magnetic anisotropy and dipolar interactions. Finally, magnetoresistance (MR) curves displayed training behaviours and different shapes when measured with different configurations (parallel, transverse and perpendicular). It is proposed that the existence and the evolution of the magnetic domain structures strongly affect the magnetotransport properties due to the extra contribution of the electron scattering at the domain walls. Furthermore, an anisotropic MR also contributes to the overall MR curves. Received: 2 March 2000 / Accepted: 28 March 2000 / Published online: 23 May 2001  相似文献   

8.
We recently reported a possible antiferromagnetically coupled phase in a Co-rich CoFeSiB thin film, that had a partially nanocrystalline Co phase in an amorphous CoFeSiB matrix. Although an amorphous CoFeSiB film should show a ferromagnetic behavior, we observed an antiferromagnetic coupling associated with a nanocrystalline Co phase in the hysteresis-loop measurements of Co-rich CoFeSiB thin films. We ascribed the observed antiferromagnetic coupling to dense stripe domains consisting of periodically up and down domains perpendicular to the surface of the film. The configuration of the stripe domains was confirmed with magnetic force microscopy images. When a longitudinal magnetic field was applied, the size of the stripe domain was reduced. While for a transverse field, the domain structure became tilted and zigzagged, but no in-plane magnetic anisotropy was noted. When the magnetic field was increased to values above the saturation magnetic field, HS = 2.5 kOe, the domain structure disappeared.  相似文献   

9.
Co2MnGe films of 30 and 50 nm in thickness were grown by RF-sputtering. Their magnetic anisotropies, dynamic properties and the different excited spin wave modes have been studied using conventional ferromagnetic resonance (FMR) and Microstrip line FMR (MS-FMR). From the in-plane and the out-of-plane resonance field values, the effective magnetization (4πMeff) and the g-factor are deduced. These values are then used to fit the in-plane angular-dependence of the uniform precession mode and the field-dependence of the resonance frequency of the uniform mode and the first perpendicular standing spin wave to determine the in-plane uniaxial, the four-fold anisotropy fields, the exchange stiffness constant and the magnetization at saturation. The samples exhibit a clear predominant four-fold magnetic anisotropy besides a smaller uniaxial anisotropy. This uniaxial anisotropy is most probably induced by the growth conditions.  相似文献   

10.
Domain structures in thin sputtered amorphous FeB films are studied by means of the longitudinal Kerr effect. In addition to the irregular domain structure characteristic of soft magnetic materials, we observe in certain regions a fine equilibrium domain structure with periodicity of a few micrometers. The Kerr contrast indicates that the magnetization at the surface of the film lies partially along the stripe direction. These characteristics and the behavior in applied fields suggests that the domains are similar to type II “strong stripe domains” observed earlier in permalloy films. Extending an earlier theory by Hara, we use a stray-field-free model with tilted orthorhombic anisotropy to show that there are at least two qualitatively different strong stripe structures: type IIa with surface magnetization perpendicular to the stripes and type IIb with surface magnetization at least partially parallel to the stripes. Type IIb is favored when Kp/K0<cos 2θ 0 where K0 is the anisotropy component with axis tilted by θ0 out of the film plane, and Kp is an in-plane anisotropy perpendicular to K0. Strong stripes in amorphous FeB appear to be type IIb while those in permalloy are usually type IIa.  相似文献   

11.
We present the complete zero temperature phase diagram of a model for ultrathin films with perpendicular anisotropy. The whole parameter space of relevant coupling constants is studied in first order anisotropy approximation. Because the ground state is known to be formed by perpendicular stripes separated by Bloch walls, a standard variational approach is used, complemented with specially designed Monte Carlo simulations. We can distinguish four regimes according to the different nature of striped domains: a high anisotropy Ising regime with sharp domain walls, a saturated stripe regime with thicker walls inside which an in-plane component of the magnetization develops, a narrow canted-like regime, characterized by a sinusoidal variation of both the in-plane and the out of plane magnetization components, which upon further decrease of the anisotropy leads to an in-plane ferromagnetic state via a spin reorientation transition (SRT). The nature of domains and walls are described in some detail together with the variation of domain width with anisotropy, for any value of exchange and dipolar interactions. Our results, although strictly valid at T=0, can be valuable for interpreting data on the evolution of domain width at finite temperature, a still largely open problem.  相似文献   

12.
Magnetic properties and internal stresses of AlN(20 nm)/[CoPt(2 nm)/AlN(20 nm)]5 multilayer structure deposited at different substrate temperatures by dc magnetron sputtering have been studied. It is found that with increasing the substrate temperature from room temperature to 400 °C, in-plane magnetic anisotropy field of the film becomes smaller, and the out-of-plane magnetization becomes stronger. Especially when the film is deposited at substrate temperature of 400 °C, the out-of-plane magnetization becomes as strong as the in-plane magnetization. On the other hand, the total in-plane residual stress of the film changes gradually from compressive to tensile. The compressive intrinsic stress is generated during deposition process and decreases with increasing the substrate temperature. After annealing at high temperatures, the films show strong perpendicular magnetic anisotropy. With increasing the annealing temperature, the in-plane thermal stress also increases and becomes dominant, which is considered to result in the perpendicular magnetic anisotropy of the films.  相似文献   

13.
CoFe2O4 (CFO) epitaxial thin films of various thicknesses were grown on MgO substrates using the pulsed electron-beam deposition technique. The films have excellent in-plane coherence with the substrate, exhibit layer-by-layer growth and have well-defined thickness fringes in x-ray diffraction measurements. Atomic force microscopy (AFM) measurements indicate that misfit dislocations form in thicker films and the critical thickness for the dislocation formation is estimated. Perpendicular magnetic anisotropy in CFO due to epitaxial in-plane tensile strain from the substrate was found. A stripe-like domain structure in the demagnetized state is demonstrated using magnetic force microscopy (MFM), in agreement with previous predictions. Coercivity increased in thicker films, which is explained by domain wall pinning due to misfit dislocations at the CFO/MgO interface.  相似文献   

14.
Stripe domain phase in a two-dimensional magnetic system was studied using model calculation and Monte-Carlo simulation in the spin reorientation transition (SRT) region. We find that near the SRT point the stripe domains evolve into a static spin wave structure with a fractional in-plane magnetization along the stripe direction and a fractional out-of-plane magnetization in a sinusoidal form. With increase in the uniaxial perpendicular anisotropy, both the wavelength and the height of the static spin wave increase slowly until the saturation of the wave height, after which the stripe width increases exponentially with the magnetic anisotropy. Our theoretical result is in good agreement with experimental observations.  相似文献   

15.
自旋转向相变中的条纹磁畴研究   总被引:1,自引:0,他引:1  
吴义政 《物理》2005,34(2):104-108
用光激发电子显微镜研究了Fe/Ni铁磁膜和Co/Cu/Fe/Ni磁耦合膜中的条纹磁畴.实验发现:在Fe/Ni体系中,条纹磁畴宽度随着铁层厚度趋近于自旋转向相变点呈指数下降;在Co/Cu/Fe/Ni体系中,Fe/M层中的条纹磁畴会沿着钴层磁矩的方向排列,其磁畴宽度会随着Co-Fe/Ni间的层间耦合强度呈指数下降.理论上推导出条纹磁畴随着磁各向异性能和层间耦合强度变化的统一公式,而实验结果与理论符合得非常好。  相似文献   

16.
We present a study of the magnetization reversal dynamics in ultrathin Au/Co/Au films with perpendicular magnetic anisotropy, for a Co thickness of 0.5, 0.7 and 1 nm. In these films, the magnetization reversal is dominated by domain nucleation for tCo=0.5, 0.7 nm and by domain wall propagation for tCo=1 nm. The prevalence of domain nucleation for the thickness range 0.5-0.7 nm is different from results reported in the literature, for the same system and for the same thickness range, where the magnetization reversal took place mainly by domain wall motion. We attribute this difference to the effect of roughness of the Au buffer layer on the morphology of the magnetic layer.  相似文献   

17.
200-nm-thick Ni films in an epitaxial Cu/Ni/Cu/Si(001) structure are expected to have an in-plane effective magnetic anisotropy. However, the in-plane remanence is only 42%, and magnetic force microscopy domain images suggest perpendicular magnetization. Quantitative magnetic force microscopy analysis can resolve the inconsistencies and show that (i) the films have perpendicular domains capped by closure domains with magnetization canted at 51 degrees from the film normal, (ii) the magnetization in the Bloch domain walls between the perpendicular domains accounts for the low in-plane remanence, and (iii) the perpendicular magnetization process requires a short-range domain wall motion prior to wall-magnetization rotation and is nonhysteretic, whereas the in-plane magnetization requires long-range motion before domain-magnetization rotation and is hysteretic.  相似文献   

18.
Magnetic stripe domains in the spin reorientation transition region are investigated in (Fe/Ni)/Cu(001) and Co/Cu/(Fe/Ni)/Cu(001) using photoemission electron microscopy. For (Fe/Ni)/Cu(001), the stripe domain width decreases exponentially as the Fe/Ni film approaches the spin reorientation transition point. For Co/Cu/(Fe/Ni)/Cu(001), the Fe/Ni stripe orientation is aligned with the Co in-plane magnetization, and the stripe domain width decreases exponentially with increasing the interlayer coupling between the Fe/Ni and Co films. By considering magnetic stripes within an in-plane magnetic field, we reveal a universal dependence of the stripe domain width on the magnetic anisotropy and on the interlayer coupling.  相似文献   

19.
利用射频磁控共溅射方法,在Si衬底上制备了Ni88Cu12薄膜,并且研究了膜厚以及真空磁场热处理温度对畴结构和磁性的影响. X射线衍射结果表明热处理后的薄膜晶粒长大,扫描电子显微镜结果发现不同热处理温度下薄膜表现出不同的形貌特征.热处理前后的薄膜面内归一化磁滞回线结果显示,经过热处理的Ni88Cu12薄膜条纹畴形成的临界厚度降低,未热处理的Ni88Cu12薄膜在膜厚为210 nm时出现条纹畴结构,而经过300℃热处理的Ni88Cu12薄膜在膜厚为105 nm就出现了条纹畴结构.高频磁谱的结果表明,随着热处理温度的增加, Ni88Cu12薄膜的共振峰会有小范围的移动.  相似文献   

20.
Strontium hexaferrite (SrFe12O19) films have been fabricated by pulsed laser deposition on Si(1 0 0) substrate with Pt(1 1 1) underlayer through in situ and post annealing heat treatments. C-axis perpendicular oriented SrFe12O19 films have been confirmed by X-ray diffraction patterns for both of the in situ heated and post annealed films. The cluster-like single domain structures are recognized by magnetic force microscopy. Higher coercivity in perpendicular direction than that for the in-plane direction shows that the films have perpendicular magnetic anisotropy. High perpendicular coercivity, around 3.8 kOe, has been achieved after post annealing at 500 °C. Higher coercivity of the post annealed SrFe12O19 films was found to be related to nanosized grain of about 50–80 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号