首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
李宝河  黄阀  杨涛  冯春  翟中海  朱逢吾 《物理学报》2005,54(8):3867-3871
用磁控溅射法在单晶MgO(100)基片上制备了[FePt 2 nm/Ag dnm]10多层膜, 经真空热处理后,得到具有高矫顽力的垂直取向L10-FePt/Ag颗粒膜.x射线衍射结 果表明,在250 ℃的热基片上溅射,当Ag层厚度d=3—11 nm时,FePt颗粒具有很好的[001]取向,随着Ag层厚度的增加,FePt颗粒尺寸减小.[FePt 2 nm/Ag 9 nm]10经过6 00 ℃真空热处理15 min后,颗粒大小仅约8 nm,垂直矫顽力达到692 kA/m.这种无磁耦合作用的颗粒膜,适合用作超高密度的垂直磁记录介质. 关键词: 磁控溅射 垂直磁记录 纳米颗粒膜 0-FePt/Ag')" href="#">L10-FePt/Ag  相似文献   

2.
An in-plane magnetic anisotropy of FePt film is obtained in the MgO 5 nm/FePt t nm/MgO 5 nm films (where t=5, 10 and 20 nm). Both the in-plane coercivity (Hc∥) and the perpendicular magnetic anisotropy of FePt films are increased when introducing an Ag-capped layer instead of MgO-capped layer. An in-plane coercivity is 3154 Oe for the MgO 5 nm/FePt 10 nm/MgO 5 nm film, and it can be increased to 4846 Oe as a 5 nm Ag-capped layer instead of MgO-capped layer. The transmission electron microscopy (TEM)-energy disperse spectrum (EDS) analysis shows that the Ag mainly distributed at the grain boundary of FePt, that leads the increase of the grain boundary energy, which will enhance coercivity and perpendicular magnetic anisotropy of FePt film.  相似文献   

3.
In this paper we report results on the synthesis and magnetic properties of L10 FePt nanocomposite films. Three fabrication methods have been developed to produce high-anisptropy FePt films: non-epitaxial growth of (0 0 1)-oriented FePt:X (X=Ag, C) composite films that might be used for perpendicular media; monodispersed FePt(CFx) core–shell nanocluster-assembled films grown with a gas-aggregation technique and having uniform cluster size and narrow size distribution; and template-mediated self-assembled FePt clusters prepared with chemical synthesis by a hydrogen reduction technique, which has a high potential for controlling both cluster size and orientation. The magnetic properties are controllable through variations in the nanocluster properties and nanostructure. Analytical and numerical simulations have been done for these films, providing better understanding of the magnetization reversal mechanisms. The films show promise for development as magnetic recording media at extremely high areal densities.  相似文献   

4.
(Fe48Pt52)100−x–(MgO)x films were used to examine the performance of a perpendicular percolated medium. Two underlayers, Pt(0 0 1)/Cr(0 0 2) and MgO(0 0 2), were used for comparison. The (Fe48Pt52)100−x–(MgO)x film with the MgO underlayer exhibits a strong preference to segregate at FePt grain boundaries. The microstructure with small closely packed MgO particles (2–4 nm) dispersed uniformly in the L10 FePt matrix was achieved in the Pt/Cr underlayered sample. Structural data reveal that the precipitate is crystallographically coherent with the surrounding L10 FePt phase and preserves good lattice alignment. Magnetic results indicate significant pinning behavior for those introduced non-magnetic columns with an enhanced coercivity of about 70%—much greater than that of the MgO underlayered samples. Percolated perpendicular medium can be realized in the FePt system and a Pt(0 0 1)/Cr(0 0 2) underlayer promotes the formation of pinning sites within the FePt grains.  相似文献   

5.
FePt–SiNx–C films with high coercivity, (001) texture and small grain size were obtained by co-sputtering FePt, Si3N4 and C on TiN/CrRu/glass substrate at 380 °C. Without C doping, FePt–SiNx films with good perpendicular anisotropy and a single layer structure were obtained. However, the grain size was still too large and the grain isolation was poor. When C was doped into the FePt–SiNx films, the out-of-plane coercivity increased due to the decrease of the exchange coupling. In addition, the grain size of the FePt films decreased, and well-separated FePt grains with uniform size were formed. The microstructure of [FePt–SiNx 40 vol%]−20 vol% C films changed from a single layer structure to a multiple layer structure when the FePt thickness was increased from 4 to 10 nm. By optimizing the sputtering process, the [FePt (4 nm)–SiNx 40 vol%]−20 vol% C (001) film with coercivity higher than 21.5 kOe, a single layer structure, and small average FePt grain size of 5.6 nm was obtained, which makes it suitable for ultrahigh density perpendicular recording.  相似文献   

6.
FePt films that have a high degree of order S in their L10 structure (S>0.90) and well-defined [0 0 1] crystalline growth perpendicular to the film plane were fabricated on thermally oxidized Si substrates by the addition of an oxide and successive rapid thermal annealing (RTA). The mechanism of L10 ordering and [0 0 1] crystalline growth perpendicular to the film plane arising through the oxide addition and RTA process is also discussed. The L10 ordering (S>0.90) and the [0 0 1] crystalline growth were achieved by (1) lowering the activation energy due to in-plane tensile stress and the initiation of L10 ordering at a low temperature, (2) [0 0 1] crystalline growth through in-plane tensile stress, and (3) enhancement of atomic diffusion via the addition of an oxide and the resultant lowering of the ordering temperature. Effect (1) was observed in the case of SiO2 addition, effect (2) was generally observed in the case of oxide addition and the RTA process, and effect (3) was prominent in the case of ZnO addition. With the addition of ZnO, the L10 ordering started at below 400 °C and was completed at 500 °C. Finally, dot patterns were successfully fabricated down to a diameter of 15 nm using electron beam lithography, and the magnetic state of the dot pattern was observed by magnetic force microscopy.  相似文献   

7.
BixY3−xFe5O12 thin films have been grown on GGG (Gd3Ga5O12) (1 1 1) substrates by the combinatorial composition-spread techniques under substrate temperature (Tsub) ranging from 410 to 700 °C and O2 pressure of 200 mTorr. In order to study the effect of substrates on the deposition of BixY3−xFe5O12 thin films, garnet substrates annealed at 1300 °C for 3 h were also used. Magneto-optical properties were characterized by our home-designed magneto-optical imaging system. From the maps of Faraday rotation angle θF, it was evident that the Faraday effect appears only when Tsub = 430-630 °C. θF reaches to the maximum value (∼6°/μm, λ = 632 nm) at 500 °C, and is proportional to the Bi contents. XRD and EPMA analyses showed that Bi ions are easier to substitute for Y sites and better crystallinity is obtained for annealed substrates than for commercial ones.  相似文献   

8.
张丽娇  蔡建旺 《物理学报》2007,56(12):7266-7273
室温下通过磁控溅射在表面热氧化的Si基片上生长了MgO/FexPt100-x双层膜和FexPt100-x单层膜系列样品,FexPt100-x的原子成分x=48—68.研究了热处理前后不同成分FePt薄膜的晶体结构和磁性的变化,尤其是MgO底层的引入对FePt的晶体结构和磁性的影响 关键词: FePt(001)薄膜 0相')" href="#">L10相  相似文献   

9.
The structural and magnetic properties of ∼12 nm thick FePt thin films grown on Si substrates annealed using a 1064 nm wavelength laser with a 10 ms pulse have been examined. The A1 to L10 ordering phase transformation was confirmed by electron and X-ray diffraction. An order parameter near 50% and a maximum coercivity of 12 kOe were obtained with laser energy densities of 25-32 J/cm2. Grain growth, quantified by dark field transmission electron microscopy, occurred during chemical ordering at the laser pulse widths studied.  相似文献   

10.
A series of ZnO1−xSx alloy films (0 ≤ x ≤ 1) were grown on quartz substrates by radio-frequency (rf) magnetron sputtering of ZnS ceramic target, using oxygen and argon as working gas. X-ray diffraction measurement shows that the ZnO1−xSx films have wurtzite structure with (0 0 2) preferential orientation in O-rich side (0 ≤ x ≤ 0.23) and zinc blende structure with (1 1 1) preferential orientation in S-rich side (0.77 ≤ x ≤ 1). However, when the S content is in the range of 0.23 < x < 0.77, the ZnO1−xSx film consists of two phases of wurtzite and zinc blende or amorphous ZnO1−xSx phase. The band gap energy of the films shows non-linear dependence on the S content, with an optical bowing parameter of about 2.9 eV. The photoluminescence (PL) measurement reveals that the PL spectrum of the wurtzite ZnO1−xSx is dominated by visible band and its PL intensity and intensity ratio of UV to visible band decrease greatly compared with undoped ZnO. All as-grown ZnO1−xSx films behave insulating, but show n-type conductivity for w-ZnO1−xSx and maintain insulating properties for β-ZnO1−xSx after annealed. Mechanisms of effects of S on optical and electrical properties of the ZnO1−xSx alloy are discussed in the present work.  相似文献   

11.
We propose a reactive ion etching (RIE) process of an L10-FePt film which is expected as one of the promising materials for the perpendicular magnetic recording media. The etching was carried out using an inductively coupled plasma (ICP) RIE system and an etching gas combination of CH4/O2/NH3 was employed. The L10-FePt films were deposited on (1 0 0)-oriented MgO substrates using a magnetron sputtering system. The etching masks of Ti were patterned on the FePt films lithographically. The etch rates of ∼16 and ∼0 nm/min were obtained for the FePt film and the Ti mask, respectively. The atomic force microscopy (AFM) analyses provided the average roughness (Ra) value of 0.95 nm for the etched FePt surface, that is, a very flat etched surface was obtained. Those results show that the highly selective RIE process of L10-FePt was successfully realized in the present study.  相似文献   

12.
Two nanocomposite Ti-Cx-Ny thin films, TiC0.95N0.60 and TiC2.35N0.68, as well as one pure TiN, were deposited at 500 °C on Si(1 0 0) substrate by reactive unbalanced dc-magnetron sputtering. Oxidation experiments of these films were carried out in air at fixed temperatures in a regime of 250-600 °C with an interval of 50 °C. As-deposited and oxidized films were characterized and analyzed using X-ray diffraction (XRD), microindentation, Newton's ring methods and atomic force microscopy (AFM). It was found that the starting oxidation temperature of nanocomposite Ti-Cx-Ny thin films was 300 °C irrespective of the carbon content; however their oxidation rate strongly depended on their carbon content. Higher carbon content caused more serious oxidation. After oxidation, the film hardness value remained up to the starting oxidation temperature, followed by fast decrease with increasing heating temperature. The residual compressive stress did not show a similar trend with the hardness. Its value was first increased with increase of heating temperature, and got its maximum at the starting oxidation temperature. A decrease in residual stress was followed when heating temperature was further increased. The film surface roughness value was slightly increased with heating temperature till the starting oxidation temperature, a great decrease in surface roughness was followed with further increase of heating temperature.  相似文献   

13.
Hf1−xSixOy is an attractive candidate material for high-k dielectrics. We report in this work the deposition of ultra-thin Hf1−xSixOy films (0.1 ≤ x ≥ 0.6) on silicon substrate at 450 °C by UV-photo-induced chemical vapour deposition (UV-CVD) using 222 nm excimer lamps. Silicon(IV) and hafnium(IV) organic compounds were used as the precursors. Films from around 5 to 40 nm in thickness with refractive indices from 1.782 to 1.870 were grown. The deposition rate was found to be of 6 nm/min at a temperature of 450 °C. The physical, interfacial and electrical properties of hafnium silicate (Hf1−xSixOy) thin films were investigated by using X-ray photoelectron spectroscopy, ellipsometry, FT-IR, C-V and I-V measurements. XRD showed that they were basically amorphous, while Fourier transform infrared spectroscopy (FT-IR), clearly revealed Hf-O-Si absorption in the photo-CVD deposited Hf1−xSixOy films. Surface and interfacial properties were analysed by TEM and XPS. It is found that carbon content in the films deposited by UV-CVD is very low and it also decreases with increasing Si/(Si + Hf) ratio, as low as about 1 at.% at the Si/(Si + Hf) ratio of 60 at.%.  相似文献   

14.
We studied a FePt-C granular film for ultra-high density perpendicular recording media towards 1 Tbits/in.2 because of strong magnetocrystalline anisotropy at its L10-phase. We deposit a Fe52Pt48-C50 % (6.7 nm) film on oxidized silicon substrates at 400 °C and 0.50 Pa Ar pressure. The perpendicular anisotropy of the film is 20 kOe, with a perfect squareness of 1. Bright-field transmission electron microscopy (TEM) images display that the FePt granular film has small and uniform grains of 6.4 ± 1.5 nm. Further work on high-resolution TEM imaging demonstrates excellent L10 ordering for this FePt granular film, which is consistent with the texture measurement by X-ray diffraction. Thus, we prove that FePt granular film is a promising candidate for high-density heat-assisted magnetic recording media.  相似文献   

15.
A series of TiSixNy superhard coatings with different Si contents were prepared on M42 steel substrates using two Ti and two Si targets by reactive magnetron sputtering at 500 °C. These samples were subsequently vacuum-annealed at 500, 600, 700, 800 and 900 °C, respectively. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), microindenter, Rockwell hardness tester and scratch tester were applied to investigate the microstructure, phase configuration, hardness and adhesion properties of as-deposited and annealed samples. The results indicated that there were two bonds, TiN and Si3N4, in all presently deposited TiSixNy thin films, that structure was nanocomposite of nanocrystalline (nc-) TiN embedded into amorphous Si3N4 matrices. Annealing treatment below 900 °C played a little role in microstructure and hardness of the coatings although it greatly affected those of steel substrates. The film-substrate adhesion strength was slightly increased, followed by an abrupt decrease with increasing annealing temperature. Its value got to the maximum at 600 °C. Annealing had little effect on the friction coefficient with its value varying in the range of 0.39-0.40.  相似文献   

16.
Ca0.54Sr0.34−1.5xEu0.08Smx(MoO4)y (WO4)1−y red phosphors were prepared by solid-state reaction using Na+ as a charge compensator for light-emitting diodes (LED). The effects of Na+ concentration, synthesis temperature, reaction time and Eu3+ concentration were studied for the properties of luminescence and crystal structure of red phosphors. The results show that the optimum reaction condition is 6%, 900 °C, 2 h and 8%. The photoluminescence spectra show that red phosphors are effectively excited at 616 nm by 292, 395 and 465 nm. The wavelengths of 465 nm nicely match the widely applied emission wavelengths of blue LED chips.  相似文献   

17.
SiCxNy thin films with different nitrogen contents were deposited by way of incorporation of different amounts of nitrogen into SiC0.70 using unbalanced reactive dc magnetron sputtering method. Their phase configurations, nanostructures and mechanical behaviors were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM) and microindentation methods. The result indicated SiC0.70 and all SiCxNy thin films exhibited amorphous irrespective of the nitrogen content. The phase configuration and mechanical behaviors of SiCxNy thin films strongly depended on nitrogen content. SiC0.70 exhibited a mixture consisting of SiC, Si and a small amount of C. Incorporated nitrogen, on one hand linked to Si, forming SiNx, on the other hand produced CNx and C at the expense of SiC. As a result, an amorphous mixture consisting of SiC, SiNx, C and CNx were produced. Such effects were enhanced with increase of nitrogen content. A low hardness of about 16.5 GPa was obtained at nitrogen-free SiC0.70. Incorporation of nitrogen or increase of nitrogen content increased the film hardness. A microhardness maximum of ∼29 GPa was obtained at a nitrogen content of 15.7 at.%. This value was decreased with further increase of N content, and finally a hardness value of ∼22 GPa was obtained at a N content of ∼25 at.%. The residual compressive stress was consistent with the hardness in the nitrogen content range of 8.6-25.3 at.%.  相似文献   

18.
(Fe50Pt50)100−x-(SiO2)x films (x=0–30 vol%) were grown on a textured Pt(0 0 1)/CrRu(0 0 2) bilayer at 420 °C using glass substrates. FePt(0 0 1) preferred orientation was obtained in the films. Interconnected microstructure with an average grain size of about 30 nm is observed in the binary FePt film. As SiO2 is incorporated, it precipitates as particles are dispersed at FePt grain boundaries. When the content of SiO2 is increased to 13 vol%, columnar FePt with (0 0 1) texture separated by SiO2 is attained. The FePt columns have a length/radius ratio of 2:1. Additionally, the mean grain size is reduced to about 13 nm. The development of this well-isolated columnar structure leads to an enhancement in coercivity by about 44% from 210 to 315 kA/m. As the SiO2 content exceeds 20 vol%, a significant ordering reduction is found accompanied by a transformation of preferred orientation from (0 0 1) to (2 0 0) and the columnar structure disappears, resulting in a drastic degradation in magnetism. The results of our study suggest that isolated columnar, grain refined, (0 0 1)-textured FePt film can be achieved via the fine control of SiO2 content. This may provide useful information for the design of FePt perpendicular recording media.  相似文献   

19.
Polycrystalline CuIn1−xGaxTe2 bulk films were synthesized by reacting, in stoichiometric proportions, high purity Cu, In, Ga and Te in a vacuum sealed quartz ampoule. The phase structure and composition of the bulk films were analysed by X-ray diffraction and energy-dispersive X-ray analysis, respectively. The bulk samples, of p-type conductivity, are found to be near-stoichiometric, polycrystalline, with tetragonal chalcopyrite structure, predominantly oriented along a direction perpendicular to the (1 1 2) plane. Photoluminescence spectra were recorded at 7 K and 700 mW to characterize the defects and the structural quality. The main peak as a function of composition has been studied.  相似文献   

20.
We report stress dependence of growth characteristics of epitaxial γ-Na0.7CoO2 films on various substrates deposited by pulsed laser deposition method. On the sapphire substrate, the γ-Na0.7CoO2 thin film exhibits spiral surface growth with multi-terraces and highly crystallized texture. For the γ-Na0.7CoO2 thin film grown on the (1 1 1) SrTiO3 substrate, the nano-islands of ∼30 nm diameter on the hexagonal grains are observed. These islands indicate that the growth mode changes from step-flow growth mode to Stranski-Krastanow (SK) growth mode. On the (1 1 1) MgO substrate, the large grains formed by excess adatoms covering an aperture between hexagonal grains are observed. These experimental demonstrations and controllability could provide opportunities of strain effects of NaxCoO2, physical properties of thin films, and growth dynamics of heterogeneous epitaxial thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号