共查询到20条相似文献,搜索用时 15 毫秒
1.
Co4Sb12−xTex compounds were prepared by mechanical alloying combined with cold isostatic pressing, and the effects of Te doping on the thermoelectric properties were studied. The electronic structure of Te-doped and undoped CoSb3 compounds has been calculated using the first-principles plane-wave pseudo-potential based on density functional theory. The experimental and calculated results show that the value of the solution limit x of Te in Co4Sb12−xTex compounds is between 0.5 and 0.7. The Fermi surface of CoSb3 is located between the conduction band and the valence band, and its electrical resistivity decreases with increasing temperature. The density of states is mainly composed of Co 3d and Sb 5p electrons for intrinsic CoSb3.The Fermi surface of Te-doped compounds moves to the conduction band and its electrical resistivity increases with increasing temperature, exhibiting n-type degenerated semiconductor character. Under the conditions of the experiment, the maximum value 2.67 mW/m K2 of the power factor for Co4Sb11.7Te0.3 is obtained at 600 K; this is about 14 times higher than that of CoSb3. 相似文献
2.
We have performed first-principles study on structural stability, elastic properties and electronic structure of Fe16N2 by applying LSDA+U method. The calculated values of formation energy and reaction enthalpy for decomposition reaction indicate that Fe16N2 is a thermodynamically stable phase at the ground state. The six independent elastic constants are derived and the bulk modulus, Young's modulus, shear modulus, and Poisson's ratio are determined as 180 GPa, 199 GPa, 76 GPa and 0.32, respectively. The elastic constants meet all the mechanical stability criteria. The ductility of Fe16N2 is predicted by Pugh's criterion. The strong bonding between Fe and N atoms results in high values of elastic constants C11 and C33, and contributes to the strengthening of the Fe16N2 structural stability. The total and partial densities of states (DOS) suggest the existence of hybridization between N-p and Fe-d bands. The position of the Fermi level in DOS curve implies that Fe16N2 is a metastable phase. 相似文献
3.
Zhisheng Nong Jingchuan ZhuXiawei Yang Yong CaoZhonghong Lai Yong Liu 《Physica B: Condensed Matter》2012,407(17):3555-3560
The lattice constants, elastic properties, electronic structure and thermodynamic properties of Al3Nb with DO22 structure have been investigated by the first-principles calculation. The calculated lattice constants were consistent with the experimental values, and the structural stability was also studied from the energetic point of view. The single-crystal elastic constants (Cij) as well as polycrystalline elastic parameters (bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio υ and anisotropy value A) were calculated, and brittleness of Al3Nb was discussed in detail. Besides, the electronic structure of tetragonal Al3Nb was studied, which indicates a mixture of metallic bond and covalent bond in Al3Nb and reveals the underlying mechanism of the stability and elastic properties of Al3Nb. Finally, the thermodynamic properties of Al3Nb were calculated and the physical properties such as heat capacity and Debye temperature were predicted within the quasi-harmonic approximation. 相似文献
4.
基于密度泛函理论的第一性原理平面波赝势方法对4种3C-SiC(111)/Mg(0001)界面模型进行研究.界面间距和粘附功的计算表明,结构优化之后的界面模型只在z轴方向发生了移动,界面间距发生了不同程度的缩短;中心型模型的稳定性强于顶位型模型,C终端结构的稳定性强于Si终端结构,中心型C终端的界面模型具有最大的粘附功(2.5834 J/m~2)和最小的界面间距(1.7193?),是4种模型中最稳定的结构. Mulliken电荷、电荷密度分布、差分电荷密度和态密度的计算表明,中心性结构的Si终端和C终端模型界面处存在共价键、离子键和金属键. 相似文献
5.
We present a first-principles calculation for the structural, magnetic, and electronic properties of LiMBO3 (M = Mn, Fe, Co). Along the [0 0 1] direction, transition metals shows antiferromagnetic coupling in LiMBO3 of both hexagonal and monoclinic lattices. The calculated magnetic moment of 5μB per formula unit is close to the experimental value. These compounds are semiconductors with band gap of 0.4-2 eV, and with average intercalation voltages of 2-4.8 V. 相似文献
6.
系统地研究了晶粒尺寸对CoSb3化合物热电性能的影响规律,结果表明晶粒尺寸对CoSb3化合物的晶格热导率κp、电导率σ、能隙宽度Eg和Seebeck系数α有显著影响.当晶粒尺寸由微米尺度减小到纳米尺度时,晶格热导率κp显著降低,Seebeck系数α有较大幅度的增加,能隙宽度Eg变宽,电导率σ有一定程度的下降.平均晶粒尺寸为200nm的CoSb3化合物在温度为700K时,ZT值达到0.43,比平均晶粒尺寸为5000nm的试样增加了4倍. 相似文献
7.
Yuki Obukuro Hiroyuki Nakamura Kenji Obata Shigenori Matsushima Masao Arai Kenkichiro Kobayashi 《Journal of Physics and Chemistry of Solids》2011,72(12):1477-1481
The electronic structure of Sr2Bi2O5 is calculated by the GGA approach. Both of the valence band maximum and the conduction band minimum are located at Γ-point. This means that Sr2Bi2O5 is a direct band-gap material. The wide energy-band dispersions near the valence band maximum and the conduction band minimum predict that holes and electrons generated by band gap excitation have a high mobility. The conduction band is composed of Bi 6p, Sr 4d and O 2p energy states. On the other hand, the valence band can be divided into two energy regions ranging from −9.5 to −7.9 eV (lower valence band) and from −4.13 to 0 eV (upper valence band). The former mainly consists of Bi 6s states hybridizing with O 2s and O 2p states, and the latter is mainly constructed from O 2p states strongly interacting with Bi 6s and Bi 6p states. 相似文献
8.
A comparative study of electronic structure and magnetic properties of SrCrO3 and SrMoO3 has been carried out using FPLAPW method with density-functional theory. The calculated results suggest that both compounds are nonmagnetic (NM) metal in cubic structures at room temperature, and they exhibit very similar band structure and electronic properties except more extend Mo 4d orbitals than Cr 3d electronic states. However, the electronic structure and magnetic properties exhibit remarkable differences between them in the low temperature phases. SrCrO3 is with a C-AFM ground state with magnetic moment of 1.18μB/Cr in the tetragonal structure, while SrMoO3 is with a NM ground state in the orthorhombic structure. It is assumed that the extend 4d orbitals may be the reason which results in NM solution at low temperature phase of SrMoO3. 相似文献
9.
The first principles within the full potential linearized augmented plane wave (FP-LAPW) method was applied to study the structural and electronic properties of cubic perovskite-type compounds BiAlO3 and BiGaO3. The lattice constant, bulk modulus, its pressure derivative, band structure and density of states were obtained. The results show that BiGaO3 should exhibit higher hardness and stiffness than BiAlO3. The Al–O or Ga–O bonds are typically covalent with a strong hybridizations as well as Bi–O ones that have a significant ionic character. Both materials are weakly ionic and exhibit wide and indirect band gaps, which are typical of insulators. 相似文献
10.
Gul Rahman 《Journal of magnetism and magnetic materials》2009,321(18):2775-2778
Magnetic and electronic structure calculations are performed for Mn2As with antiferromagnetic (AFM), ferromagnetic (FM), and ferrimagnetic (FIM) spin ordering, using the full-potential linearized augmented plane-wave (FLAPW) method based on the generalized gradient approximation (GGA). It is shown that AFM is the magnetic ground state of Mn2As, which is in agreement with the experimental observations. At a low temperature (0 K), AFM-FIM transition is also predicted which is consistent with the previous predictions. The ground state stability of the magnetic structure of Mn2As is attributed to the nearest Mn (I) and Mn (II) antiferromagnetic interaction. The calculated magnetic moment of Mn (II) is found to be in good agreement with the neutron diffraction experiment while there is a disagreement for the magnetic moment of Mn (I). The different magnetic moments are reflected in the electronic structures of Mn2As and the exchange splitting between Mn atoms is shown to be an intra-atomic effect. 相似文献
11.
应用第一原理方法研究了储氢材料α-Li2Mg(NH)2和β-Li2Mg(NH)2两种构型的结构性质和电子性质.计算优化得到的晶胞参数和N-H键长符合实验得到的数据.通过Murnaghan状态方程得到了体积模量和零压力下的能量,计算结果表明α-Li2Mg(NH)2为基态构型.通过Mulliken布居分析说明α构型的N-Li/Mg的离子特性和N-H间的交互作用都弱于β构型.态密度分析结果表明,价带轨道主要由N原子的s轨道和p轨道占据,并与H原子的s轨道杂化. 相似文献
12.
First-principles calculations of electronic structures of (001) epitaxial LaGaO3/SrTiO3 heterostructures were performed in the framework of density functional theory. The effects of atomic relaxation on electronic characteristics of both n-type (LaO)+/(TiO2)0 and p-type (GaO2)−/(SrO)0 interfaces are investigated. It is found that the n-type interface remains metallic, whereas the p-type interface becomes insulating after atomic relaxation. Polar distortion in the LaGaO3 layers associated with the atomic relaxation strongly screens the intrinsic electric field induced by periodically stacking (LaO)+ and (GaO2)− charged atomic layers on SrTiO3 with charge neutral (001) atomic layers. This relieves the trend to a polar catastrophe and reduces the carrier charge density on the interface. 相似文献
13.
Maokun Wu Xiaolong Yao Yuan Hao Hong Dong Yahui Cheng Hui Liu Feng Lu Weichao Wang Kyeongjae Cho Wei-Hua Wang 《Physics letters. A》2018,382(2-3):111-115
Utilizing first-principles calculations, the electronic structures, magnetic properties and band alignments of monolayer MoS2 doped by 3d transition metal atoms have been investigated. It is found that in V, Cr, Mn, Fe-doped monolayers, the nearest neighboring S atoms (SNN) are antiferromagnetically polarized with the doped atoms. While in Co, Ni, Cu, Zn-doped systems, the SNN are ferromagnetically coupled with the doped atoms. Moreover, the nearest neighboring Mo atoms also demonstrate spin polarization. Compared with pristine monolayer MoS2, little change is found for the band edges' positions in the doped systems. The Fermi level is located in the spin-polarized impurity bands, implying a half-metallic state. These results provide fundamental insights for doped monolayer MoS2 applying in spintronic, optoelectronic and electronic devices. 相似文献
14.
Yao LuPei-Ji Wang Chang-Wen ZhangXian-Yang Feng Lei JiangGuo-Lian Zhang 《Physica B: Condensed Matter》2011,406(17):3137-3141
Using the full-potential linearized augmented plane wave method (FP-LAPW), we have investigated the electronic and optical properties of Sn1−xMnxO2 (x=0, 0.0625, 0.125, 0.1875, 0.25). The doped Mn results in reduction of the band gap, which can be attributed to a series of impurity bands at the bottom of the conduction band caused by the strong hybridization between Mn 3d and O 2p. The results also show that the Mn-doped systems tend to convert into p-type semiconductor with direct band gaps. With the increase of Mn concentration, both the imaginary part of dielectric function and the absorption spectrum show red-shift corresponding to the change of band gaps. 相似文献
15.
Based on the density functional pseudopotential method, the electronic structures and the optical properties of CdI2 doped with Cu are investigated in detail. The calculation results indicate that the defect of Cu(Cd) exists steadily with a certain solubility. For the Cu doped CdI2, the new highly localized impurity bands induced by Cu 3d states lie just across the Fermi energy at the top of the valence band. The doping of Cu induces reduction of band gap of CdI2; red shifts are revealed in both the imaginary part of dielectric function and the absorption spectra corresponding to the change in band gaps. Moreover, the study of the reflection spectrum and the loss function shows that the doped Cu is responsible for the increased reflection peak intensity and the red shift of the plasma resonant frequency of CdI2. 相似文献
16.
Using the first-principles computations we have calculated phonon-dispersion relations and the phonon density of states for perovskite and post-perovskite phases of MgSiO3. From them using the quasiharmonic approximation we have estimated the free energies, bulk modulus and volume expansion coefficients of both structures at various pressures and temperatures. Our calculations indicate that the thermal expansivity of MgSiO3 changes very little across the phase transition. We have determined the P-T coexisting line of perovskite and post-perovskite phases. 相似文献
17.
Using first-principles density functional theory within the generalized gradient approximation method, the effect of Zn doping on electronic and magnetic properties of NiFe2O4 ferrite spinel has been studied. The crystal structure of the compounds is assigned to a pseudocubic structure and the lattice constant increases as the Zn concentration increases. Our spin-polarized calculations give a half-metallic state for NiFe2O4 and a normal metal state for ZnxNi1−xFe2O4 (0<x≤0.5). Based on the magnetic properties calculations, it is found that the saturation magnetic moment enhances linearly with increase in the Zn content in NiFe2O4. The Zn doping in NiFe2O4 also induces strong ferrimagnetism since it decreases the magnetic moment of A-sites. 相似文献
18.
The transformation of the band structure of LaCoO3 in the applied magnetic field has been theoretically studied. If the field is below its critical value BC≈65 T, the dielectric band gap decreases with the field, thus giving rise to negative magnetoresistance that is highest at T≈300÷500 K. The critical field is related to the crossover between the low- and high-spin terms of Co3+ ions. The spin crossover results in an insulator–metal transition induced by an increase in the magnetic field. Similar calculations have been done for GdCoO3 which is characterized by large spin gap∼2000 K. 相似文献
19.
We have investigated by means of first-principles total energy calculations the electronic structure of the sulvanite compounds: Cu3VS4, Cu3NbS4 and Cu3TaS4; the later is a possible candidate as a p-type transparent conductor with potential applications in solar cells and electrochromic devices. The calculated electronic structure shows that these compounds are indirect band gap semiconductors, with the valence band maximum located at the R-point and the conduction band minimum located at the X-point. The character of the valence band maximum is dominated by Cu d-states and the character of the conduction band minimum is due to the d-states of the group five elements. From the calculated charge density and electron localisation function we can conclude that the sulvanite compounds are polar covalent semiconductors. 相似文献
20.
We evaluate the adsorption of SO3 molecule on the Pt (1 1 1) surface using the first-principles calculations by a slab model with a periodic boundary condition. We find that there are four stable adsorption configurations on the Pt surface, where SO3 molecules are adsorbed above the three-fold fcc and hcp sites. In two of these configurations, S and two O atoms are bound to the Pt atoms, and in two other of them, all the three O atoms are bound to Pt surface atoms. Besides, it is found that molecular orbitals of SO3 and those of Pt surface are hybridized in the active metal d-bands region, that the localized molecular orbitals in SO3 are stabilized, and that the charge is transferred from Pt to S 3p by SO3 adsorption on Pt surface though the other interaction of S and O (bound to Pt) component with Pt is little. In addition, the bond between S and O bound to Pt become weak by SO3 adsorption on Pt surface because the charge polarization to O-Pt bond weakens the bond between S and O bound to Pt. This interaction is assumed to encourage the breakage of S-O bond. 相似文献