首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, we have first demonstrated a facile and green synthetic approach for preparing superparamagnetic Fe3O4 nanoparticles using α-d-glucose as the reducing agent and gluconic acid (the oxidative product of glucose) as stabilizer and dispersant. The X-ray powder diffraction (XRD), X-ray photoelectron spectrometry (XPS), and selected area electron diffraction (SAED) results showed that the inverse spinel structure pure phase polycrystalline Fe3O4 was obtained. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results exhibited that Fe3O4 nanoparticles were roughly spherical shape and its average size was about 12.5 nm. The high-resolution TEM (HRTEM) result proved that the nanoparticles were structurally uniform with a lattice fringe spacing about 0.25 nm, which corresponded well with the values of 0.253 nm of the (3 1 1) lattice plane of the inverse spinel Fe3O4 obtained from the JCPDS database. The superconducting quantum interference device (SQUID) results revealed that the blocking temperature (Tb) was 190 K, and that the magnetic hysteresis loop at 300 K showed a saturation magnetization of 60.5 emu/g, and the absence of coercivity and remanence indicated that the as-synthesized Fe3O4 nanoparticles had superparamagnetic properties. Fourier transform infrared spectroscopy (FT-IR) spectrum displayed that the characteristic band of Fe-O at 569 cm−1 was indicative of Fe3O4. This method might provide a new, mild, green, and economical concept for the synthesis of other nanomaterials.  相似文献   

2.
CoFe2O4/Fe3O4 nano-composite ceramics were synthesized by Spark Plasma Sintering. The X-ray diffraction patterns show that all samples are composed of CoFe2O4 and Fe3O4 phases when the sintering temperature is below 900 °C. It is found that the magnetic properties strongly depend on the sintering temperature. The two-step hysteresis loops for samples sintered below 500 °C are observed, but when sintering temperature reaches 500 °C, the step disappears, which indicates that the CoFe2O4 and Fe3O4 are well exchange coupled. As the sintering temperature increases from 500 to 800 °C, the results of X-ray diffractometer indicate the constriction of crystalline regions due to the ion diffusion at the interfaces of CoFe2O4/Fe3O4 phases, which have great impact on the magnetic properties.  相似文献   

3.
Magnetic Fe3O4 materials with mesoporous structure are synthesized by co-precipitation method using yeast cells as a template. The X-ray diffraction (XRD) pattern indicates that the as-synthesized mesoporous hybrid Fe3O4 is well crystallized. The Barrett-Joyner-Halenda (BJH) models reveal the existence of mesostructure in the dried sample which has a specific surface area of 96.31 m2/g and a pore size distribution of 8-14 nm. Transmission electron microscopy (TEM) measurements confirm the wormhole-like structure of the resulting samples. The composition and chemical bonds of the Fe3O4/cells composites are studied by Fourier transform infrared (FT-IR) spectroscopy. Preliminary magnetic properties of the mesoporous hybrid Fe3O4 are characterized by a vibrating sample magnetometer (VSM). The magnetic Fe3O4/cells composites with mesoporous structure have potential applications in biomedical areas, such as drug delivery.  相似文献   

4.
Ultrafine α-Fe2O3 nanoparticles with an extremely narrow distribution were synthesized by microwave heating. Transmission electron microscopy (TEM) images showed that most primary particles have ellipsoid shapes, and the average diameter of the primary particles was less than 10 nm. The electron diffraction pattern and fringes in some particles in TEM images showed that these nanoparticles were single crystals. The BET surface area of the freeze-dried product was 217 m2/g. The initial discharge capacity of the α-Fe2O3 nanoparticles exceeded 1007 mA/g (cut-off voltage: 0.5 V). This large capacity corresponds to that calculated by assuming the reduction of Fe3+ to Fe0. The α-Fe2O3 nanoparticles also work as a rechargeable electrode material. The charge-discharge test between 4 V and 1.5 V gave a good rechargeable capacity of about 150 mAh/g.  相似文献   

5.
In this study, the effect of silane treatment of Fe3O4 on the magnetic and wear properties of Fe3O4/epoxy nanocomposites was investigated. Fe3O4 nanopowders were prepared by coprecipitation of iron(II) chloride tetrahydrate with iron(III) chloride hexahydrate, and the surfaces of Fe3O4 were modified with 3-aminopropyltriethoxysilane. The magnetic properties of the powders were measured on unmodified and surface-modified Fe3O4/epoxy nanocomposites using SQUID magnetometer. Wear tests were performed on unmodified and surface-modified Fe3O4/epoxy nanocomposites under the same conditions (sliding speed: 0.18 m/s, load: 20 N).The results showed that the saturation magnetization (Ms) of surface-modified Fe3O4/epoxy nanocomposites was approximately 110% greater than that of unmodified Fe3O4/epoxy nanocomposites. This showed that the specific wear rate of surface-modified Fe3O4/epoxy nanocomposites was lower than that of unmodified Fe3O4/epoxy nanocomposites. The decrease in wear rate and the increase in magnetic properties of surface-modified Fe3O4/epoxy nanocomposites occurred due to the improved dispersion of Fe3O4 into the epoxy matrix.  相似文献   

6.
Methods to synthesize magnetic Fe3O4 nanoparticles and to modify the surface of particles are presented in the present investigation. Fe3O4 magnetic nanoparticles were prepared by the co-precipitation of Fe3+ and Fe2+, NH3·H2O was used as the precipitating agent to adjust the pH value, and the aging of Fe3O4 magnetic nanoparticles was accelerated by microwave (MW) irradiation. The obtained Fe3O4 magnetic nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and vibrating sample magnetometer (VSM). The average size of Fe3O4 crystallites was found to be around 8–9 nm. Thereafter, the surface of Fe3O4 magnetic nanoparticles was modified by stearic acid. The resultant sample was characterized by FT-IR, scanning electron microscopy (SEM), XRD, lipophilic degree (LD) and sedimentation test. The FT-IR results indicated that a covalent bond was formed by chemical reaction between the hydroxyl groups on the surface of Fe3O4 nanoparticles and carboxyl groups of stearic acid, which changed the polarity of Fe3O4 nanoparticles. The dispersion of Fe3O4 in organic solvent was greatly improved. Effects of reaction time, reaction temperature and concentration of stearic acid on particle surface modification were investigated. In addition, Fe3O4/polystyrene (PS) nanocomposite was synthesized by adding surface modified Fe3O4 magnetic nanoparticles into styrene monomer, followed by the radical polymerization. The obtained nanocomposite was tested by thermogravimetry (TG), differential scanning calorimetry (DSC) and XRD. Results revealed that the thermal stability of PS was not significantly changed after adding Fe3O4 nanoparticles. The Fe3O4 magnetic fluid was characterized using UV–vis spectrophotometer, Gouy magnetic balance and laser particle-size analyzer. The testing results showed that the magnetic fluid had excellent stability, and had susceptibility of 4.46×10−8 and saturated magnetization of 6.56 emu/g. In addition, the mean size d (0.99) of magnetic Fe3O4 nanoparticles in the fluid was 36.19 nm.  相似文献   

7.
Epitaxial Fe3O4(0 0 1) thin films (with a thickness in the range of 10-20 nm) grown on MgO substrates were characterized using low-energy electron diffraction (LEED), conversion electron Mössbauer spectroscopy (CEMS) and investigated using Rutherford backscattering spectrometry (RBS), channeling (RBS-C) experiments and X-ray reflectometry (XRR). The Mg out-diffusion from the MgO substrate into the film was observed for the directly-deposited Fe3O4/MgO(0 0 1) films. For the Fe3O4/Fe/MgO(0 0 1) films, the Mg diffusion was prevented by the Fe layer and the surface layer is always a pure Fe3O4 layer. Annealing and ion beam mixing induced a very large interface zone having a spinel and/or wustite formula in the Fe3O4-on-Fe film system.  相似文献   

8.
In this work we report a study of the magnetic behavior of ferrimagnetic oxide CoFe2O4 and ferrimagnetic oxide/ferromagnetic metal CoFe2O4/CoFe2 nanocomposite. The latter compound is a good system to study hard ferrimagnet/soft ferromagnet exchange coupled. Two steps were followed to synthesize the bimagnetic CoFe2O4/CoFe2 nanocomposite: (i) first, preparation of CoFe2O4 nanoparticles using a simple hydrothermal method, and (ii) second, reduction reaction of cobalt ferrite nanoparticles using activated charcoal in inert atmosphere and high temperature. The phase structures, particle sizes, morphology, and magnetic properties of CoFe2O4 nanoparticles were investigated by X-Ray diffraction (XRD), Mossbauer spectroscopy (MS), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM) with applied field up to 3.0 kOe at room temperature and 50 K. The mean diameter of CoFe2O4 particles is about 16 nm. Mossbauer spectra revealed two sites for Fe3+. One site is related to Fe in an octahedral coordination and the other one to the Fe3+ in a tetrahedral coordination, as expected for a spinel crystal structure of CoFe2O4. TEM measurements of nanocomposite showed the formation of a thin shell of CoFe2 on the cobalt ferrite and indicate that the nanoparticles increase to about 100 nm. The magnetization of the nanocomposite showed a hysteresis loop that is characteristic of exchange coupled systems. A maximum energy product (BH)max of 1.22 MGOe was achieved at room temperature for CoFe2O4/CoFe2 nanocomposites, which is about 115% higher than the value obtained for CoFe2O4 precursor. The exchange coupling interaction and the enhancement of product (BH)max in nanocomposite CoFe2O4/CoFe2 are discussed.  相似文献   

9.
Ho3Fe5O12 ceramics with garnet structure were prepared by the solid-state reaction method. The results revealed the existence of Fe2+ ions have intensive influence on dielectric and magnetic properties of Ho3Fe5O12 ceramics, which could be further confirmed by oxygen treatment. With a magnetic field lower than 10 kOe, the ME coefficient reaches 33 ps m−1 at room temperature. And the ME coupling was further verified by dielectric anomaly near Néel temperature.  相似文献   

10.
Bifunctional magnetic-optical Fe3O4/ZnO nanocomposites with different molar ratio were successfully synthesized by a facile two-step strategy. Compared with the other methods, it was found to be mild, inexpensive, green, convenient and efficient. Fe3O4 nanocrystal was used as seed for the deposit and growth of ZnO nanoparticle. A series of the characterizations manifested that the combination of Fe3O4 with ZnO nanoparticles was successful. Photocatalytic activity studies confirmed that as-prepared nanocomposites had excellent photodegradating behavior to Methyl Orange (MO) compared to the pure ZnO nanoparticles. The results showed that the degradation percentage of MO was about 93.6% for 1 h when the amount of catalyst was 0.51 g L−1 and initial concentration of MO was 6 × 10−5 mol L−1 in the pH 7 solution. Moreover, the kinetics of photocatalytic degradation reaction could be expressed by the first-order reaction kinetic model. Furthermore, the Fe3O4/ZnO nanocomposites could be also served as convenient recyclable photocatalysts because of their magnetic properties.  相似文献   

11.
(In1−xFex)2O3 (x = 0.02, 0.05, 0.2) powders were prepared by a solid state reaction method and a vacuum annealing process. A systematic study was done on the structural and magnetic properties of (In1−xFex)2O3 powders as a function of Fe concentration and annealing temperature. The X-ray diffraction and high-resolution transmission electron microscopy results confirmed that there were not any Fe or Fe oxide secondary phases in vacuum-annealed (In1−xFex)2O3 samples and the Fe element was incorporated into the indium oxide lattice by substituting the position of indium atoms. The X-ray photoelectron spectroscopy revealed that both Fe2+ and Fe3+ ions existed in the samples. Magnetic measurements indicated that all samples were ferromagnetic with the magnetic moment of 0.49-1.73 μB/Fe and the Curie temperature around 783 K. The appearance of ferromagnetism was attributed to the ferromagnetic coupling of Fe2+ and Fe3+ ions via an electron trapped in a bridging oxygen vacancy.  相似文献   

12.
The effects of high magnetic field (10 T) on the products obtained by calcination of Co-Fe LDH precursors at different temperatures were investigated. The XRD results indicated that FeIII substituted for CoIII in Co3O4 to yield CoIICoIIIFeIIIO4 under the calcination of Co-Fe LDH precursors at 400 °C. The products obtained by magnetic field annealing at 400 °C had a porous plate-like morphology, whereas the products without magnetic field annealing were composed of nanoparticles. It was seen that CoFe2O4 phase could be formed at low temperature (about 500 °C) under the magnetic field annealing. The grain size of products obtained by magnetic field annealing at 800 °C was larger than that of zero magnetic field. It was found that the saturation magnetization was significantly enhanced after magnetic field annealing, especially at lower temperature (≤600 °C). The possible reason for the effects on the microstructure and magnetic properties of products obtained by magnetic field annealing was discussed.  相似文献   

13.
Nano-sized magnetic Y3Fe5O12 ferrite having a high heat generation ability in an AC magnetic field was prepared by bead milling. A commercial powder sample (non-milled sample) of ca. 2.9 μm in particle size did not show any temperature enhancement in the AC magnetic field. The heat generation ability in the AC magnetic field improved with a decrease in the average crystallite size for the bead-milled Y3Fe5O12 ferrites. The highest heat ability in the AC magnetic field was for the fine Y3Fe5O12 powder with a 15-nm crystallite size (the samples were milled for 4 h using 0.1 mm? beads). The heat generation ability of the excessively milled Y3Fe5O12 samples decreased. The main reason for the high heat generation property of the milled samples was ascribed to an increase in the Néel relaxation of the superparamagnetic material. The heat generation ability was not influenced by the concentration of the ferrite powder. For the samples milled for 4 h using 0.1 mm? beads, the heat generation ability (W g−1) was estimated using a 3.58×10−4 fH2 frequency (f/kHz) and the magnetic field (H/kA m−1), which is the highest reported value of superparamagnetic materials.  相似文献   

14.
Nanocomposite of hard (BaFe12O19)/soft ferrite (Ni0.8Zn0.2Fe2O4) have been prepared by the sol–gel process. The nanocomposite ferrite are formed when the calcining temperature is above 800 °C. It is found that the magnetic properties strongly depend on the presintering treatment and calcining temperature. The “bee waist” type hysteresis loops for samples disappear when the presintering temperature is 400 °C and the calcination temperature reaches 1100 °C owing to the exchange-coupling interaction. The remanence of BaFe12O19/Ni0.8Zn0.2Fe2O4 nanocomposite ferrite with the mass ratio of 5:1 is higher than a single phase ferrite. The specific saturation magnetization, remanence magnetization and coercivity are 63 emu/g, 36 emu/g and 2750 G, respectively. The exchange-coupling interaction in the BaFe12O19/Ni0.8Zn0.2Fe2O4 nanocomposite ferrite is discussed.  相似文献   

15.
(Mg0.476Mn0.448Zn0.007)(Fe1.997Ti0.002)O4 nanocrystalline powder prepared by high energy ball-milling process were consolidated by microwave and conventional sintering processes. Phases, microstructure and magnetic properties of the ferrites prepared by different processes were investigated. The (Mg0.476Mn0.448Zn0.007)(Fe1.997Ti0.002)O4 nanocrystalline powder could be prepared by high energy ball-milling process of raw Fe3O4, MnO2, ZnO, TiO2 and MgO powders. Prefired and microwave sintered ferrites could achieve the maximum density (4.86 g/cm−3), the average grain size (15 μm) was larger than that (10 μm) prepared by prefired and conventionally sintered ferrites with pure ferrite phase, and the saturation magnetization (66.77 emu/g) was lower than that of prefired and conventionally sintered ferrites (88.25 emu/g), the remanent magnetization (0.7367 emu/g) was higher than that of prefired and conventionally sintered ferrites (0.0731 emu/g). Although the microwave sintering process could increase the density of ferrites, the saturation magnetization of ferrites was decreased and the remanent magnetization of ferrites was also increased.  相似文献   

16.
Superparamagnetic Fe3O4 nanoparticles were first synthesized via soya bean sprouts (SBS) templates under ambient temperature and normal atmosphere. The reaction process was simple, eco-friendly, and convenient to handle. The morphology and crystalline phase of the nanoparticles were determined from scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD) spectra. The effect of SBS template on the formation of Fe3O4 nanoparticles was investigated using X-ray photoemission spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). The results indicate that spherical Fe3O4 nanoparticles with an average diameter of 8 nm simultaneously formed on the epidermal surface and the interior stem wall of SBS. The SBS are responsible for size and morphology control during the whole formation of Fe3O4 nanoparticles. In addition, the superconducting quantum interference device (SQUID) results indicate the products are superparamagnetic at room temperature, with blocking temperature (TB) of 150 K and saturation magnetization of 37.1 emu/g.  相似文献   

17.
The sol was obtained by sol-gel method. Then, the sol was dripped onto the absorbent cotton template. The gel was obtained after the evaporation of water. Strontium ferrite microtubules were prepared after carrying out calcination process at different temperatures. The phase, morphology and particle diameter and the magnetic properties of samples were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM), respectively. The effects of Fe3+/Sr2+ mole ratio and calcination temperature on the crystal structure, morphology and magnetic properties of ferrite microtubules were studied. The external diameters of obtained SrFe12O19 microtubules were found to range between 8 and 13 μm; the wall thicknesses ranged between 1 and 2 μm. When the Fe3+/Sr2+ mole ratio and the calcination temperature were 11.5 and 850 °C, respectively, the coercivity, saturation magnetization and remanent magnetization for the samples were 7115.1 Oe, 70.1 and 42.4 emu/g, respectively. The mechanism of the formation and variation in magnetic properties of the microtubules were explained.  相似文献   

18.
Nanocrystalline Zn0.5Mn0.5Fe2O4 was synthesized through the pyrolysis of polyacrylate salt precursors prepared via in situ polymerization of the metal salts and acrylic acid. The pyrolysis behavior of the polymeric precursors was studied by use of thermal analysis. The as-obtained product was characterized by powder X-ray diffraction (XRD), transmission electron microscope (TEM), electron diffraction (ED) pattern, scanning electron microscopy (SEM) and electron dispersive X-ray (EDX) analysis. The results revealed that the particle size is in the range of 15–25 nm for Zn-Mn ferrites with good crystallinity. Magnetic properties of the sample at 300 K were measured using a vibrating sample magnetometer, which showed that the sample exhibited characteristics of superparamagnetism.  相似文献   

19.
In this paper, a novel approach was successfully developed for advanced catalyst Ag-deposited silica-coated Fe3O4 magnetic nanoparticles, which possess a silica coated magnetic core and growth active silver nanoparticles on the outer shell using n-butylamine as the reductant of AgNO3 in ethanol. The as-synthesized nanoparticles have been characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), Fourier transform infrared spectra (FT-IR), vibration sample magnetometer (VSM), and have been exploited as a solid phase catalyst for the reduction of p-nitrophenol in the presence of NaBH4 by UV-vis spectrophotometry. The obtained products exhibited monodisperse and bifunctional with high magnetization and excellent catalytic activity towards p-nitrophenol reduction. As a result, the as-obtained nanoparticles showed high performance in catalytic reduction of p-nitrophenol to p-aminophenol with conversion of 95% within 14 min in the presence of an excess amount of NaBH4, convenient magnetic separability, as well as remained activity after recycled more than 6 times. The Fe3O4@SiO2-Ag functional nanostructure could hold great promise for various catalytic reactions.  相似文献   

20.
The Fe63B23Nd7Y3Nb3Cr1 nanocomposite magnets in the form of sheets have been prepared by copper mold casting technique. The phase evolution, crystal structure, microstructural and magnetic properties have been investigated in the as-cast and annealed states. The as-cast sheets show magnetically soft behaviors which become magnetically hard by thermal annealing. The optimal annealed microstructure was composed of nanosize soft magnetic α-Fe (19-29 nm) and hard magnetic Nd2Fe14B (45-55 nm) grains. The best hard magnetic properties such as intrinsic coercivity, jHc of 1119 kA/m, remanence, Br of 0.44 T, magnetic induction to saturation magnetization ratio, Mr/Ms=0.61 and maximum energy product, (BH)max of 55 kJ/m3 was obtained after annealing at 680 °C for 15 min. The annealing treatment above 680 °C results in non-ideal phase grains growth, which degrade the magnetic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号