首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fully dense nanocomposite magnets containing hard R2Fe14B and soft α-Fe phases were produced from both melt-spun and mechanically milled alloys by hot pressing and subsequent die upsetting. Although R-lean R–Fe–B alloys that do not contain the grain-boundary R-rich phase are known not to be susceptible to texture development by means of die upsetting, we found that small additions of Cu make the texturing possible. The resulting microstructure of oriented platelet grains is similar to that of the R-rich die-upset magnets. Properties of the Cu-containing R2Fe14B/α-Fe die-upset magnets can be further improved by adding Ga. The anisotropic Pr12Fe80Cu1Ga1B6 magnet made from mechanically milled alloy and containing 17.2 wt% α-Fe had a remanence of 13 kG and a maximum energy product of 23.4 MG Oe. The Pr11.25Fe80.75Cu1Ga1B6 magnet made from melt-spun alloy and containing 16.2 wt% α-Fe had a maximum energy product of 19.9 MG Oe. The low coercivity of 3–4 kOe typical for the Cu-containing R2Fe14B/α-Fe die-upset magnets is due to the relatively coarse α-Fe grains. The latter grains are too large for intergranular exchange interaction, but, nevertheless, they are well coupled with the R2Fe14B grains by a long-range magnetostatic interaction.  相似文献   

2.
The effect of Ti and C additions on the corrosion behavior of Nd9.4Pr0.6Febal.Co6B6Ga0.5TixCx (x=0, 1.5, 3, 6) isotropic nanocomposite melt-spun ribbons in 3.5 wt% sodium chloride solution was studied. The melt-spun ribbons were annealed at 750 °C for 10 min in argon-filled quartz capsules. The microstructure of multiphase nanocrystalline samples and corrosion products was characterized using the X-ray diffraction and electron microscopy techniques. The electrochemical behavior was assessed using potentiodynamic polarization and electrochemical impedance spectroscopy. The results show that the addition of Ti and C increases the corrosion resistance of NdFeB ribbons; the best corrosion resistance was obtained for 1.5 wt% Ti and C content.  相似文献   

3.
It is difficult to obtain the crystallographic alignment for stoichiometric Nd2Fe14B alloys by applying the melt-spun and subsequent hot-pressing and hot-deformation techniques. However, the enhanced alignment and magnetic properties of die-upset nano-crystal Nd2Fe14B magnets have been obtained by Nb addition in the present paper. The magnetic properties studies show that Nb addition leads to the remarkable increase of remanence Br and intrinsic coercivity Hci, which is due to the improvement of c-axis texture and refinement of microstructure. Microstructure studies using transmission electron microscopy (TEM) and X-ray diffraction (XRD) reveal that Nb atoms are enriched at grain boundary and the NbFeB phase is observed with increasing Nb content. Since some Fe atoms in the Nd2Fe14B phase participate in the formation of NbFeB phase, the excessive Nd atoms may be enriched at grain boundary, which may improve the physical property of grain boundary and provide a mass transport pass for preferential growth of oriented Nd2Fe14B grains, thus leading to the enhanced alignment and magnetic properties.  相似文献   

4.
Isotropic and anisotropic nanocrystalline Nd14Fe80B6 and Nd12Dy2Fe73.2Co6.6Ga0.6B5.6 magnets have been produced from melt-spun materials by hot pressing and subsequent die-upsetting. The microstructure has been characterized using XRD, scanning electron microscope and energy dispersive X-ray analysis. The corrosion behaviour of die-upset NdFeB-based magnets has been studied in 0.1 M H2SO4 by inductively coupled plasma solution analysis and electrochemical polarization techniques and compared with their hot-pressed counterparts. Texturing of hot-pressed (isotropic) NdFeB-based magnets via die-upsetting significantly modifies their corrosion performance. Textured Nd12Dy2Fe73.2Co6.6Ga0.6B5.6 magnets exhibit the highest corrosion resistance in this study. The low effective diffusivity of corrosion hydrogen inside the bulk magnet and the reduction in the strength of galvanic coupling between magnet phases are the main reasons for the observed improvement in the corrosion resistance. The corrosion behaviour of the magnets in relation to their phase composition and phase distribution is discussed in terms of dissolution, hydrogenation and pulverization. Pulverization trends are correlated with hydrides formation and hydrogen-trapping sites using thermal desorption analysis.  相似文献   

5.
The effects of varying Nd-contents on the magnetic properties of Nd12.8+xFe81.2−xyzCoyGazB6 ribbons and the resulting die-upset magnets have been investigated. It was found that the Nd content has a significant effect on both magnetic properties and texture of the die-upset magnets. An optimum Nd content exhibits good texture, while both Nd-lean and excessively Nd-rich Nd-Fe-B alloys lead to unsatisfactory textures. The magnetic properties and texture of the die-upset magnets strongly deteriorated with a further increase in the Nd-content. The thermo-mechanical characteristics and the formation mechanism of two kinds of cracks in backward-extruded ring magnets have also been investigated.  相似文献   

6.
The phases, microstructure, and magnetic properties of Co80Zr18−xNbxB2 (x=1, 2, 3, and 4) melt-spun ribbons were investigated. The small substitution of Nb for Zr in the Co–Zr–B melt-spun ribbons resulted in the improvement of magnetic properties, especially the coercivity. The main effect of added Nb on the coercovity of Co–Zr–Nb–B melt-spun ribbons, originated from modification of the grain size of Co11Zr2 phase. The coercivity of the Co–Zr–Nb–B melt-spun ribbons depends on the annealing temperature. The optimal magnetic properties of Hc=5.1 kOe, and (BH)max=3.4 MGOe were obtained in the Co80Zr15Nb3B2 melt-spun ribbons annealed at 600 °C for 3 min.  相似文献   

7.
张然  刘颖  高升吉  谢治  涂铭旌 《物理学报》2008,57(1):526-530
在之前研究Nb元素的添加对快淬(Nd,Dy)11.5Fe82.4-mNbmB6.1永磁体磁性能、温度特性及显微组织影响的基础上,进一步研究了Dy元素在Nd11.5-nDynFe81.4Nb1B6.1 (n=0,0.5,1,1.5,2)永磁体中 关键词: NdFeB 磁性能 温度特性 显微组织 X-ray absorption fine structure  相似文献   

8.
The Fe65B22Nd9Mo4 nanocomposite permanent magnets in the form of a rectangular cross sectioned rod have been prepared by annealing the amorphous precursors. The thermal behavior, structure and magnetic properties of the magnets have been investigated by differential scanning calorimetry, X-ray diffractometry, electron microscopy and magnetometry techniques. The as-cast Fe65B22Nd9Mo4 alloy showed soft magnetic properties, which changed into magnetically hard after annealing. Results provoke that the magnetic properties of the alloy are sensitive to thermal processing conditions. The optimum hard magnetic properties with a remanence (Br) of 0.56 T, coercivity (iHc) of 920.7 kA/m and maximum energy product (BH)max of 50.15 kJ/m3 were achieved after annealing the alloy at 983 K for 10 min. The good magnetic properties of Fe65B22Nd9Mo4 magnets are ascribed to the exchange coupling between the nano-scaled soft α-Fe, Fe3B and hard Nd2Fe14B magnetic grains.  相似文献   

9.
The Fe63B23Nd7Y3Nb3Cr1 nanocomposite magnets in the form of sheets have been prepared by copper mold casting technique. The phase evolution, crystal structure, microstructural and magnetic properties have been investigated in the as-cast and annealed states. The as-cast sheets show magnetically soft behaviors which become magnetically hard by thermal annealing. The optimal annealed microstructure was composed of nanosize soft magnetic α-Fe (19-29 nm) and hard magnetic Nd2Fe14B (45-55 nm) grains. The best hard magnetic properties such as intrinsic coercivity, jHc of 1119 kA/m, remanence, Br of 0.44 T, magnetic induction to saturation magnetization ratio, Mr/Ms=0.61 and maximum energy product, (BH)max of 55 kJ/m3 was obtained after annealing at 680 °C for 15 min. The annealing treatment above 680 °C results in non-ideal phase grains growth, which degrade the magnetic properties.  相似文献   

10.
In boron-substituted melt-spun Sm(Co,Fe,Cu,Zr)7.5-type alloys a nanocomposite microstructure and high coercivities in both as-spun and short-time annealed ribbons can be obtained. In the present study three different compositions, namely Sm(Co0.73Fe0.1Cu0.09Zr0.04B0.04)7.5, Sm(Co0.70Fe0.1Cu0.12Zr0.04B0.04)7.5 and Sm(Co0.70Fe0.1Ni0.12Zr0.04B0.04)7.5 have been examined in order to investigate the influence of composition on the magnetic properties and the microstructure. Melt-spun ribbons have been obtained and annealing has been followed under argon atmosphere for 30–75 min at 600–870 °C. For the as-spun ribbons the TbCu7-type of structure and fcc-Co as a secondary phase have been identified in the X-ray diffraction patterns. For the annealed ribbons above 700 °C the 1:7 phase transforms into 2:17 and 1:5 phases. The TEM studies have shown a homogeneous nanocrystalline microstructure with average grain size of 30–80 nm. Coercivity values of 15–27 kOe have been obtained from hysteresis loops traced in non-saturating fields. The coercivity decreases with temperature, but it is sufficiently large to maintain values higher than 5 kOe at 380 °C.  相似文献   

11.
董生智  李岫梅  李卫 《物理学报》1999,48(13):62-67
利用快淬法制备了Nd4.5Fe76.3Ga0.3Co1.0B18非晶合金,晶化处理后获得主相为Fe3B与Nd2Fe14B的纳米晶永磁材料.采用X射线衍射、透射电子显微镜及磁测量手段分析研究了材料的微观结构与磁性能,并通过测量磁体的δM曲线,研究了晶粒间的交换耦合作用及其与微观结构、磁性能的关系. 关键词:  相似文献   

12.
The magnetic domain structures of Fe78.8−xCoxCu0.6Nb2.6Si9B9 (x=0, 20, 40, 60) alloys are investigated by Lorentz microscopy coupled with the focused ion beam method. The specimen prepared using the FIB method is found to have a considerably more uniform thickness compared to that prepared using the ion-milling method. In Fe38.8Co40Cu0.6Nb2.6Si9B9 and Fe18.8Co60Cu0.6Nb2.6Si9B9 alloys, 180° domain walls extending in the direction of the induced magnetic anisotropy are observed. Analysis with Lorentz microscopy reveals that the width of the magnetic domains decreases with an increase in the cobalt content or the induced magnetic anisotropy Ku, that is, the domain width d is proportional to the induced magnetic anisotropy (Ku)−1/4. On the other hand, in the in situ Lorentz microscopy observation as a function of temperature, magnetic ripple structures are found to appear in a localized area due to the fluctuation of magnetization vectors from 423 K. It is observed that the induced magnetic anisotropy caused by the applied magnetic field at 803 K is not suppressed by the magnetic ripple structures observed at 423–443 K.  相似文献   

13.
Nanocrystalline Nd12Fe82B6 (atomic ratio) alloy powders with Nd2Fe14B/α-Fe two-phase structure were prepared by HDDR combined with mechanical milling. The as-cast Nd12Fe82B6 alloy was disproportionated via ball milling in hydrogen, and desorption–recombination was then performed. The phase and structural change due to both the milling in hydrogen and the subsequent desorption–recombination treatment was characterized by X-ray diffraction (XRD). The desorption–recombination behavior of the as-disproportionated alloy was investigated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The morphology and microstructure of the final alloy powders subject to desorption–recombination treatment were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. The results showed that, by milling in hydrogen for 20 h, the matrix Nd2Fe14B phase of the alloy was fully disproportionated into a nano-structured mixture of Nd2H5, Fe2B, and α-Fe phases with average size of about 8 nm, and that a subsequent desorption–recombination treatment at 760 °C for 30 min led to the formation of Nd2Fe14B/α-Fe two-phase nanocomposite powders with average crystallite size of 30 nm. The remanence Br, coercivity Hc, and maximum energy product (BH)max of such nanocrystalline Nd12Fe82B6 alloy powders achieved 0.73 T, 610 kA/m, and 110.8 kJ/m3, respectively.  相似文献   

14.
用电弧熔炼法制备了Nd3.6Pr5.4Fe83Co3B5合金铸锭,然后利用熔旋快淬法在铜辊转速V=20m/s下制备了Nd3.6Pr5.4Fe83Co3B5薄带.快淬带主要由软磁相α-Fe和Nd2Fe14B型的硬磁相组成.采用直流退磁剩磁曲线方法分析了样品在反磁化过程中的可逆与不可逆磁化部分,并研究了软磁相和硬磁相的反磁化行为,得到样品的不可逆磁化形核场Hno约为440kA/m.同时研究了样品的磁黏滞性,结果表明由于软磁相的存在使得热激活体积较大. 关键词:  相似文献   

15.
A systematic investigation of the influence of different types of annealing on the magnetoimpedance (MI) effect in melt-spun (Co1−xFex)89Zr7B4 [x=0, 0.025, 0.05] and (Co0.88Fe0.12)78.4Nb2.6Si9B9Al ribbons has been carried out in the frequency range 500 kHz-13 MHz and under dc magnetic fields (Hdc) up to 80 Oe. In the stress annealed ribbons, the strain-induced transverse anisotropy is seen to result in large MI. Magnetic domains were investigated in the ribbons through magnetic force microscopy.  相似文献   

16.
The effectiveness of nanoscale Dy2Fe14B thin films on coercivity and energy product of melt-spun ribbons of Nd2Fe14B at high temperatures was investigated. It is hypothesized that the nanoscale Dy-thin film will act as an obstacle for the nucleation of reverse domains and also maximize the energy of domain walls and thereby improve the magnetic performance at high temperatures. Pulsed laser deposition (PLD) of amorphous Dy2Fe14B layers on Nd2Fe14B melt-spun ribbons was performed for a nominal thickness of 40 nm. The coated ribbons were then annealed in environmentally controlled quartz furnace at two different cycles (750 °C for 15 min and 900 °C for 2 h) to cause crystallization. Magnetic hysteresis tests conducted at 300 and 400 K revealed that there is small but consistent improvement in the magnetic properties of the coated ribbons annealed at 750 °C for 15 min. However, higher temperature annealing (900 °C for 2 h) drastically reduced the magnetic properties. The incomplete recrystallization of amorphous structure at 750 °C for 15 min and large grain growth and formation of non-magnetic phases at 900 °C for 2 h are believed to be responsible for not meeting the expected magnetic performance.  相似文献   

17.
Recent studies have shown the effects of a post sintering heat treatment at 1000 °C for 24 h on the microstructure and magnetic properties of Pr-Fe-B/Nd-Fe-B magnets based on Nd16Fe76B8 and Pr16Fe76B8. In an attempt to understand the influence of environmental factors, an investigation into the effects of annealing under different degrees of vacuum for both types of sintered magnets has been carried out. The effect of annealing the Pr-Fe-B magnets at 1000 °C for 24 h resulted in a general increase in the magnetic properties, especially the intrinsic coercivity, although the degree of improvement appeared to be dependent on the initial annealing conditions (ambient pressure). Oxygen analysis of sintered and annealed magnets indicates a change in the nature of the grain boundary phases after the annealing treatment. The effect of annealing the Nd-Fe-B magnets at 1000 °C for 24 h resulted in a general decrease in the magnetic properties, especially the intrinsic coercivity.  相似文献   

18.
Bulk anisotropic NdFeB/α-Fe nano-composites were obtained directly from alloys of Nd11Dy0.5Fe82.4−xNbxB6.1 (x=0,0.5,1.0,1.5). High resolution transmission electron microscopy images showed the existence of Nb-rich amorphous grain boundary phase in the alloys with Nb doped. Field emission scanning electron microscope morphologies and X-ray diffraction patterns revealed the grain size and grain alignment of hot pressed and hot deformed nanocomposites. It was found that Nb could refine the grain size and grain texture in hot worked ribbons. Vibrating sample magnetometer results showed that the magnetic properties of the anisotropic nanocomposites were improved with increased Nb doping. The remanence, coercivity and maximum energy product of the bulk anisotropic Nd11Dy0.5Fe80.4Nb2B6.1 nanocomposites were 1.04 T, 563 kA/m and 146 kJ/m3, respectively.  相似文献   

19.
NdFeNbB with the additions of Dy2O3 and Sn permanent magnets have been attained by means of powder-blending technique, and their magnetic properties, temperature performance and microstructure were studied in this paper. The addition of just 2.0 wt% Dy2O3 or 0.3 wt% Sn proved to be very effective in improving the permanent magnetic properties of NdFeNbB magnets. Dy2O3 additions result in the increase in the Hci and temperature dependence due to the increase of Tc, formation of (NdDy)-rich phase and grain refinement of Φ phase. This improvement of the coercivity stability of the magnets from the addition of Sn is attributed to the smoothing effect of the Sn addition at the grain boundaries. The magnetic properties, the temperature dependence and Curie temperature of NdFeNbB with Dy2O3 and Sn combined addition were found to be considerably improved. From the X-ray diffraction, SEM-EDAX studies and the thermo-magnetic study, the improved properties due to the solution of Dy and Sn to the Φ phase, the reduced Neff and the smaller Φ phase.  相似文献   

20.
To improve the magnetic properties and corrosion resistance of magnet, SiO2 nanopowders were added into Nd28.25Dy2.75FebalAl0.15Ga0.1Nb0.1B0.98-sintered magnets as grain boundary modifiers. It was found that the intrinsic coercivity (Hcj), remanence (Br) and corrosion resistance were all improved with addition of certain amount of SiO2 nanopowders. The optimum addition amount of SiO2 nanopowders was found to be 0.01 wt%. Thermodynamic calculation in combination of energy dispersive X-ray spectroscopy (EDX) analyses indicated that SiO2 nanopowders reacted with Nd of Nd-rich phase. As a result, the intergranular phase was modified, and the grain growth of main phase was restrained. It led to the optimization of microstructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号