首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Oxygen vacancies in the MgO barriers of epitaxial Fe/MgO/Fe magnetic tunnel junctions are observed to introduce symmetry-breaking scatterings and hence open up channels for noncoherent tunneling processes that follow the normal WKB approximation. The evanescent waves inside the MgO barrier thus experience two-step tunneling, the coherent followed by the noncoherent process, and lead to lower tunnel magnetoresistance, higher junction resistance, as well as increased bias and temperature dependence. The characteristic length of the symmetry scattering process is determined to be about 1.6 nm.  相似文献   

2.
We employ the spin-torque response of magnetic tunnel junctions with ultrathin MgO tunnel barrier layers to investigate the relationship between spin transfer and tunnel magnetoresistance (TMR) under finite bias, and find that the spin torque per unit current exerted on the free layer decreases by < 10% over a bias range where the TMR decreases by > 40%. This is inconsistent with free-electron-like spin-polarized tunneling and reduced-surface-magnetism models of the TMR bias dependence, but is consistent with magnetic-state-dependent decay lengths in the tunnel barrier.  相似文献   

3.
We report an inelastic electron tunneling spectroscopy study on MgO magnetic junctions with thin barriers (0.85-1.35 nm). Inelastic electron tunneling spectroscopy reveals resonant electronic trapping within the barrier for voltages V>0.15 V. These trapping features are associated with defects in the barrier crystalline structure, as confirmed by high-resolution transmission electron microscopy. Such defects are responsible for resonant tunneling due to energy levels that are formed in the barrier. A model was applied to determine the average location and energy level of the traps, indicating that they are mostly located in the middle of the MgO barrier, in accordance with the high-resolution transmission electron microscopy data and trap-assisted tunneling conductance theory. Evidence of the influence of trapping on the voltage dependence of tunnel magnetoresistance is shown.  相似文献   

4.
Tunneling anisotropic magnetoresistance (TAMR) is observed in tunnel junctions with transition metal electrodes as the moments are rotated from in-plane to out-of-plane in sufficiently large magnetic fields that the moments are nearly parallel to one another. A complex angular dependence of the tunneling resistance is found with twofold and fourfold components that vary strongly with bias voltage. Distinctly different TAMR behaviors are obtained for devices formed with highly textured crystalline MgO(001) and amorphous Al2O3 tunnel barriers. A tight-binding model shows that a fourfold angular dependence can be explained by the presence of an interface resonant state that affects the transmission of the contributing tunneling states through a spin-orbit interaction.  相似文献   

5.
We measured inelastic electron tunneling (IET) spectra and conductance for MgO tunneling magnetoresistance (TMR) films to obtain information on the ferromagnetic/barrier layer interface. The IET spectra showed the difference between amorphous and crystalline structures in the barrier. In the magnetic tunnel junction (MTJ) with a crystalline barrier the IET spectra indicated an Mg-O phonon peak at a low bias voltage by measurement with a parallel magnetization configuration. On the other hand, no peak was observed in the MTJ with an amorphous barrier.  相似文献   

6.
The effect of bias voltage on electron tunneling across a junction with a ferroelectric-ferromagnetic composite barrier is investigated theoretically. Because of the inversion symmetry breaking of the spontaneous ferroelectric polarization, bias voltage dependence of the electron tunneling shows significant differences between the positive bias and the negative one. The differences of spin filtering or tunnel magnetoresistance increase with the increasing absolute value of bias voltage. Such direction preferred electron tunneling is found intimately related with the unusual asymmetry of the electrical potential profile in two-phase composite barrier and provides a unique change to realize rectifying functions in spintronics.  相似文献   

7.
In quasimagnetic tunnel junctions with a EuS spin-filter tunnel barrier between Al and Co electrodes, we observed large magnetoresistance (MR). The bias dependence shows an abrupt increase of MR ratio in high bias voltage, which is contrary to conventional magnetic tunnel junctions. This behavior can be understood as due to Fowler-Nordheim tunneling through the fully spin-polarized EuS conduction band. The I-V characteristics and bias dependence of MR calculated using tunneling theory show excellent agreement with experiment.  相似文献   

8.
The crystallization characteristics of a middle CoFeB free layer in a magnetic tunnel junction (MTJ) with double MgO barriers were investigated by tunneling magnetoresistance (TMR) measurements of patterned cells across an 8-inch wafer. The MTJ structure was designed to have two CoFeB free layers and one bottom pinned layer, separated by MgO tunnel barriers. The observed resistance showed three types of TMR curves depending on the crystallization of the middle CoFeB layer. From the analysis of TMR curves, coherent crystallization of the middle CoFeB layer with the top and bottom MgO barriers was found to occur non-uniformly: About 80% of the MTJ cells in the wafer exhibited coherent crystallization of the middle CoFeB layers with the bottom MgO tunnel barrier, while others had coherent crystallization with the top MgO tunnel barrier or both barriers. This non-uniform crystallization of the middle CoFeB layer in a double MTJ was also clearly observed in tunneling electron microscopy images. Thus, control of the crystallization of the middle CoFeB layer is important for optimizing the MTJ with double MgO barriers, and especially for the fabrication of double barrier MTJ on a large area substrate.  相似文献   

9.
In a joint experimental and theoretical study, we investigate the bias-voltage dependence of the tunnel magnetoresistance (TMR) through a vacuum barrier. The TMR observed by spin-polarized scanning tunneling microscopy between an amorphous magnetic tip and a Co(0001) sample is almost independent of the bias voltage at large tip-sample separations. Whereas qualitative understanding is achieved by means of the electronic surface structure of Co, the experimental findings are compared quantitatively with bias-voltage dependent first-principles calculations for ballistic tunneling. At small tip-sample separations, a pronounced minimum in the experimental TMR was found at +200 mV bias.  相似文献   

10.
李飞飞  李正中  肖明文 《中国物理》2005,14(5):1025-1031
本文研究温度和势垒中的电子有效质量对铁磁隧道结中隧穿磁致电阻(TMR)的偏压依赖和变号行为的影响。所求得的TMR随温度上升明显减小的结果与实验一致。除了前文中指出的势垒高度(Ф)以外, 还发现垒中电子的有效质量(mB)是物理上控制TMR变号的另一个重要因素。相应于TMR变号的临界电压(VC)将随Ф升高而增大, 但随mB增大而减小。此外, 零偏压的TMR和临界电压VC将因温度升高而减小。作者希望上述理论结果将有助于实验研究。  相似文献   

11.
J. Mathon 《Phase Transitions》2013,86(4-5):491-500
Rigorous theory of the tunneling magnetoresistance (TMR) based on the real-space Kubo formula and fully realistic tight-binding bands fitted to an ab initio band structure is described. It is first applied to calculate the TMR of two Co electrodes separated by a vacuum gap. The calculated TMR ratio reaches , 65% in the tunneling regime but can be as high as 280% in the metallic regime when the vacuum gap is of the order of the Co interatomic distance (abrupt domain wall). It is also shown that the spin polarization P of the tunneling current is negative in the metallic regime but becomes positive P , 35% in the tunneling regime. Calculation of the tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction is also described. The calculated optimistic TMR ratio is in excess of 1000% for an MgO barrier of , 20 atomic planes and the spin polarization of the tunneling current is positive for all MgO thicknesses. It is also found that spin-dependent tunneling in an Fe/MgO/Fe(001) junction is not entirely determined by states at the o point ( k =0) even for MgO thicknesses as large as , 20 atomic planes. Finally, it is demonstrated that the TMR ratio calculated from the Kubo formula remains nonzero when one of the Co electrodes is covered with a copper layer. It is shown that non-zero TMR is due to quantum well states in the Cu layer which do not participate in transport. Since these only occur in the down-spin channel, their loss from transport creates a spin asymmetry of electrons tunneling from a Cu interlayer, i.e. non-zero TMR. Numerical modeling is used to show that diffuse scattering from a random distribution of impurities in the barrier may cause quantum well states to evolve into propagating states, in which case the spin asymmetry of the nonmagnetic layer is lost and with it the TMR.  相似文献   

12.
The Rowell criteria, commonly used to identify tunneling in magnetic tunnel junctions (MTJ), are scrutinized. While neither the exponential-thickness dependence of the conductivity nor fits of non-linear transport data are found to be reliable tunneling criteria, the temperature-dependent conductivity does remain a solid criterion. Based on experimental studies of the bias and temperature-dependent resistance and magnetoresistance of MTJs, with and without shorted barriers, a new set of criteria is formulated.  相似文献   

13.
The influence of the insertion of an ultrathin NiO layer between the MgO barrier and the ferromagnetic electrodes in magnetic tunnel junctions has been investigated from measurements of the tunneling magnetoresistance and via x-ray magnetic circular dichroism (XMCD). The magnetoresistance shows a high asymmetry with respect to bias voltage, giving rise to a negative value of up to -16% at 2.8 K. We attribute this effect to the formation of noncollinear spin structures at the interface of the NiO layer as inferred from XMCD measurements. The magnetic moments of the interface Ni atoms tilt from their easy axis due to exchange coupling with the neighboring ferromagnetic electrode, and the tilting angle decreases with increasing NiO thickness. The experimental observations are further supported by noncollinear spin density functional calculations.  相似文献   

14.
We propose an analytical model of spin-dependent resonant tunneling through a 3D assembly of localized states (spread out in energy and in space) in a barrier. An inhomogeneous distribution of localized states leads to resonant tunneling magnetoresistance inversion and asymmetric bias dependence as evidenced with a set of experiments with MnAs/GaAs(7-10 nm)/MnAs tunnel junctions. One of the key parameters of our theory is a dimensionless critical exponent beta scaling the typical extension of the localized states over the characteristic length scale of the spatial distribution function. Furthermore, we demonstrate, through experiments with localized states introduced preferentially in the middle of the barrier, the influence of an homogeneous distribution on the spin-dependent transport properties.  相似文献   

15.
We have studied the effects of the initial stages of the annealing on magnetic tunnel junctions with MgO barriers and CoFeB electrodes. We report changes in the resistance-voltage characteristics and tunneling magnetoresistance for patterned transport junctions, and correlate these with the observed changes in the structural and magnetic interface morphologies determined by soft X-ray resonant magnetic scattering from sheet films from the same wafer. An important feature of our experiment was that all measurements were carried out within the soft X-ray diffractometer on samples from the same wafer subjected to simultaneous annealing cycles, so that our magnetotransport and scattering data are directly comparable. The as-grown junction showed a tunneling magnetoresistance ratio of 5.5%, and a specific barrier resistance of . A anneal for 1 h resulted in a small rise in barrier resistance and magnetoresistance coupled with a smoothing of the magnetic interfaces, consistent with the healing of barrier defects and removal of tunneling hot-spots. A subsequent anneal for a further hour resulted in further smoothing, and a rise in the magnetoresistance ratio to 72%, and a much weaker dependence of the parallel state resistance upon voltage bias, indicating the development of crystallographic texture in the electrodes. Annealing to yielded a further decrease in magnetic interface width (the quadrature sum of roughness and intermixing length scales). The reduction in interface width for Co species occurred at higher temperatures than for Fe throughout the experiments.  相似文献   

16.
A qualitative analysis of spin-dependent tunneling in ferromagnetic metal-insulator-ferromagnetic metal junctions is performed using the WKB approximation and a parabolic band model. It is shown that, as distinct from other tunneling characteristics, only electrons moving at large angles in the plane of the tunnel barrier contribute to the magnetoresistance. The cause of the rapid decrease in the junction magnetoresistance upon applying a bias voltage across the junction is ascertained. It is shown that this cause is attributed to the mirror character of tunneling and remains valid within the framework of more complicated models.  相似文献   

17.
Spin-dependent transport properties are investigated in a single-crystal magnetic tunnel junction (MTJ) which consists of two Fe electrodes separated by an MgO insulating barrier. Our calculations are based on the first-principle density functional theory including the metal–oxide interface. Modifications are observed in the electronic and magnetic structure of the interface as a result of oxidation. Spin polarizations (SPs) more than 80% and ?86% are obtained at zero temperature for clean interfaces in the parallel and anti-parallel alignments of the ferromagnetic electrodes, respectively, when a 7 monolayer MgO is used as the barrier. In the parallel alignment, the zero-bias SP is observed to be positive throughout the barrier reaching to a maximum at the central point. On the other hand, in the anti-parallel alignment, the SP of the electrodes is seen to penetrate deep into the barrier. The effects of interface oxidation on the band structure of the electrode surfaces are simulated using the fixed-spin-moment calculations. Also, we study dependence of the tunneling magnetoresistance on the barrier thickness and applied voltage in the trilayer within the effective mass approximation. It is shown that the TMR ratio decreases rapidly with increasing the barrier thickness and applied voltage. Our calculations explain qualitatively the main features of the recent experimental observations. Our results may be useful for the development of spintronic devices.  相似文献   

18.
A model of spin-dependent transport of electrons through a ferromagnet-insulator-ferromagnet structure is developed. It takes into account the image forces, tunnel barrier parameters, and effective masses of an electron tunneling in the barrier and in the ferromagnetic electrode in the free electron approximation. Calculations for an iron-aluminum oxide-iron structure show that, with an increase in the bias voltage, the tunnel magnetoresistance decreases monotonically and then breaks into damped oscillations caused by the interference of the electrons’ wave functions in the conduction region of the potential barrier. The image forces increase the tunnel magnetoresistance by two or three times.  相似文献   

19.
A recent theoretical estimation indicated that the NM/FI/FI/NM double spin-filter junction (DSFJ, here the NM and FI represent the nonmagnetic electrode and the ferromagnetic insulator (semiconductor) spacer, respectively) could have very high tunneling magnetoresistance (TMR) at zero bias. To meet the requirement in research and application of the magnetoresistance devices, we have calculated the dependences of tunneling magnetoresistance of DSFJ on the bias (voltage), the thicknesses of ferromagnetic insulators (semiconductors) and the average barrier height. Our results show that except its very high value, the TMR of DSFJ does not decrease monotonously and rapidly with rising bias, but increase slowly at first and decrease then after having reached a maximum value. This feature is in distinct contrast to the ordinary magnetic tunnel junction FM/NI/FM (FM and NI denote the ferromagnetic electrode and the nonmagnetic insulator (semiconductor) spacer, respectively), and is of benefit to the use of DSFJ as a magnetoresistance device.  相似文献   

20.
The temperature dependence of the tunneling magnetoresistance (TMR) for magnetic tunneling junctions is investigated experimentally before and after the sample is annealed. As grown, the TMR is observed to increase with temperature from 80 to 160 K. A modified Julliere model in conjunction with a spin-dependent two-step tunneling is suggested to describe this temperature dependence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号