首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Tetrahedron: Asymmetry》1998,9(23):4219-4238
A wide variety of planar chiral cyclopalladated compounds of general formulae [Pd{[(η5-C5H3)–CHN–CH(Me)–C10H7]Fe(η5-C5H5)}Cl(L)] (with L=py-d5 or PPh3), [Pd{[(η5-C5H3)–CHN–CH(Me)–C10H7]Fe(η5-C5H5)}(acac)] or [Pd{[(R1–CC–R2)25-C5H3)–CHN–CH(Me)–C10H7]Fe(η5-C5H5)}Cl] (with R1=R2=Et; R1=Me, R2=Ph; R1=H, R2=Ph; R1=R2=Ph; R1=R2=CO2Me or R1=CO2Et, R2=Ph) are reported. The diastereomers {(Rp,R) and (Sp,R)} of these compounds have been isolated by either column chromatography or fractional crystallization. The free ligand (R)-(+)-[{(η5-C5H4)–CHN–CH(Me)–C10H7}Fe(η5–C5H5)] (1) and compound (+)-(Rp,R)-[Pd{[(Et–CC–Et)25-C5H3)–CHN–CH(Me)–C10H7]Fe(η5-C5H5)}Cl] (7a) have also been characterized by X-ray diffraction. Electrochemical studies based on cyclic voltammetries of all the compounds are also reported.  相似文献   

2.
The aprotic and protic bi- and multidentate iminophosphines 2-Ph2PC6H4N=CR1R2 (R1=H, R2=Ph=2a; R1=Me R2=Ph=2b; R1=H, R2=2-thienyl=2c; R1=H, R2=C6H4-2-PPh2=2d; R1=H, R2=C6H4-2-OH=2e, R1=H, R2=C6H4-2-OH-3-But=2f; R1=H, R2=CH2C(O)Me=2g) have been prepared by the acid catalyzed condensation of 2-(diphenylphosphino)aniline with the corresponding aldehyde–ketone. Iminophosphine 2d can be reduced with sodium cyanoborohydride to give the corresponding amino-diphosphine 2-Ph2PC6H4N(H)CH2C6H4-2-PPh2 (2h). In the presence of a stoichiometric quantity of acid, 2-(diphenylphosphino)aniline reacts in an unexpected manner with benzaldehyde, salicylaldehyde, or acetophenone to give the corresponding 2,3-dihydro-1H-benzo[1,3]azaphosphol-3-ium salts and with pyridine-2-carboxaldehyde to give N-(pyridin-2-ylmethyl)-2-diphenylphosphinoylaniline, the latter of which has been characterized by single-crystal X-ray crystallography, as its palladium dichloride derivative. The attempted condensation of 2-(diphenylphosphino)aniline with pyridine-2-carboxaldehyde to give the corresponding pyridine-functionalized iminophosphine resulted in an unusual transformation involving the diastereoselective addition of two equivalents of aldehyde to give 1,2-dipyridin-2-yl-2-(o-diphenylphosphinoyl)phenylamino-ethanol, which has been characterized by a single-crystal X-ray structure determination. The bidentate iminophosphine 2-Ph2PC6H4N=C(H)Ph reacts with [(cycloocta-1,5-diene)PdClX] X=Cl, Me) to give [Pd{2-Ph2PC6H4N=C(H)Ph}ClX] and the imino-diphosphine 2-Ph2PC6H4N=C(H)C6H4-PPh2 reacts with [(cycloocta-1,5-diene)PdClMe] to give [Pd{2-Ph2PC6H4N=C(H)C6H4---PPh2}ClMe] and each has been characterized by single-crystal X-ray crystallography. The monobasic iminophosphine 2-Ph2PC6H4N=C(Me)CH2C(O)Me reacts with [Ni(PPh3)2Cl2] in the presence of NaH to give the phosphino–ketoiminate complex [Ni{2-Ph2PC6H4N=C(Me)CHC(O)Me}Cl], which has been structurally characterized. Mixtures of iminophosphines 2ah and a palladium source catalyze the Suzuki cross coupling of 4-bromoacetophenone with phenyl boronic acid. The efficiency of these catalysts show a marked dependence on the palladium source, catalysts formed from [Pd2(OAc)6] giving consistently higher conversions than those formed from [Pd2(dba)3] and [PdCl2(MeCN)2]. Catalysts formed from neutral bi- and terdentate iminophosphines 2ad gave significantly higher conversions than those formed from their monobasic counterparts 2ef. Notably, under our conditions the conversions obtained with 2ac compare favorably with those of the standards; catalysts formed from tris(2-tolyl)phosphine and tris(2,4-di-tert-butylphenyl)phosphite and a source of palladium. In addition, mixtures of [Ir(COD)Cl]2 and 2ah are active for the hydrosilylation of acetophenone; in this case catalysts formed from monobasic iminophosphines 2ef giving the highest conversions.  相似文献   

3.
Terminal alkynes (HCCR) (R=COOMe, CH2OH) insert into the metal-carbyne bond of the diiron complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(NCMe)(Cp)2][SO3CF3] (R=Xyl, 1a; CH2Ph, 1b; Me, 1c; Xyl=2,6-Me2C6H3), affording the corresponding μ-vinyliminium complexes [Fe2{μ-σ:η3-C(R)CHCN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R=Xyl, R=COOMe, 2; R=CH2Ph, R=COOMe, 3; R=Me, R=COOMe, 4; R=Xyl, R=CH2OH, 5; R=Me, R=CH2OH, 6). The insertion is regiospecific and C-C bond formation selectively occurs between the carbyne carbon and the CH moiety of the alkyne. Disubstituted alkynes (RCCR) also insert into the metal-carbyne bond leading to the formation of [Fe2{μ-σ:η3-C(R)C(R)CN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R=Me, R=Xyl, 8; R=Et, R=Xyl, 9; R=COOMe, R=Xyl, 10; R=COOMe, R=CH2Ph, 11; R=COOMe, R=Me, 12). Complexes 2, 3, 5, 8, 9 and 11, in which the iminium nitrogen is unsymmetrically substituted, give rise to E and/or Z isomers. When iminium substituents are Me and Xyl, the NMR and structural investigations (X-ray structure analysis of 2 and 8) indicate that complexes obtained from terminal alkynes preferentially adopt the E configuration, whereas those derived from internal alkynes are exclusively Z. In complexes 8 and 9, trans and cis isomers have been observed, by NMR spectroscopy, and the structures of trans-8 and cis-8 have been determined by X-ray diffraction studies. Trans to cis isomerization occurs upon heating in THF at reflux temperature. In contrast to the case of HCCR, the insertion of 2-hexyne is not regiospecific: both [Fe2{μ-σ:η3-C(CH2CH2CH3)C(Me)CN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R=Xyl, 13; R=Me, 15) and [Fe2{μ-σ:η3-C(Me)C(CH2CH2CH3)CN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R=Xyl, 14, R=Me, 16) are obtained and these compounds are present in solution as a mixture of cis and trans isomers, with predominance of the former.  相似文献   

4.
The kinetics of hydrolysis of aliphatic ketone di-tert-butylperoxyketals R1R2C=O, R1, R2=CH3, CH3; CH3, C2H5; CH3, n-C3H7; CH3, n-C6H13; CH3, i-C5H10; CH3, i-C4H9; C2H5, i-C3H7; n-C4H9, n-C4H9; CH3, C6H5-CH2, in dioxane in the presence of H2SO4 were investigated by IR spectroscopy. It was found that the reaction is reversible and takes place according to the equation R1R2C· (OOC(CH3)3)2 + H2O;H+ R1R2C=O + 2HOOC(CH3)3. The proposed mechanism of hydrolysis includes the fast, quasiequilibrium formation of protonated peroxyketal and subsequent formation of the alkylperoxycarbenium ion. A three-parameter correlation equation is proposed for describing the initial rates of hydrolysis of R1R2C(oo-t-Bu)2 peroxyketals.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 11, pp. 2501–2506, November, 1990.  相似文献   

5.
制备了由2,6—二乙酰吡啶和肼基硫代甲酸酯衍生的希夫碱C5H3N[CH=NNHC(S)XR]2(X=S,R=CH3、C6H5CH2;X=O,R=C6H5CH2).离析出类型为MC5H3N[CH=NN=C(S)XR]2(M=Co2+、Ni2+、Zn2+、Pb2+和Cd2+)的希夫碱配合物.配合物为元素分析、红外、可见—紫外光谱以及磁化率测量所表征.结果指出:上述希夫碱均为N3S2型五齿配体.  相似文献   

6.
The reaction of bromomethyl-dibromo-indium(III), Br2InCH2Br with dialkylselenides, R1SeR2 (R1 = CH3, R2 = CH2C6H5; R1 = C2H5, R2 = CH2C6H5; R1 = R2 = CH2C6H5) afforded the corresponding dialkylselenonium methylide complexes of indium tribromide, Br3InCH2SeR1R2, which were fully characterized by NMR spectroscopy and single crystal X-ray diffraction studies.  相似文献   

7.
Efficiency and structural specificity earmark the reaction of phosphonium ions 1 with cyclic acetals and ketals to yield 1,3,2‐dioxaphospholanium ions 2 [Eq. (1)]. Potential applications of this reaction are in monitoring trace levels of organophosphorus esters and in developing novel carbonyl deprotection agents. R=OCH3, CH3; R1=H, CH3; R2=CH3, C6H5; R3=H, CH3.  相似文献   

8.
Reactions of organomanganese compounds R1MnI (R1 = Ph, 4-MeC6H4-, Me, Bu,n-C7H15, BuC=C, PhOC), prepared from R1Li and Mnl2 in Et2O, with aldehydes MeCH(OR2)CHO (R2 = CH2Ph, CH2OMe, CH2OCH2Ph) affordthreo-alcohols MeCH(OR2)CH(OH)R1 with high diastereoselectivity. The interactions of phenylmanganese derivatives PhMnX (X = Cl, Br, I), Ph2Mn, and Ph3MnLi with 2-benzyloxypropanal were used as examples for studying the influence of reagent and solvent nature on addition diastereoselectivity.Translated fromIzvestiya Akademii Nauk, Seriya Khimicheskaya, No. 1, pp. 178–181, January, 1993.  相似文献   

9.
Leucine methyl and ethyl esters reacted with 3-bromobenzaldehyde and 4-chlorobenzaldehyde in anhydrous methanol in the presence of magnesium sulfate to afford the coresponding Schiff bases of the general formula (CH3)2CHCH2CH(COOR1)N=CHR2 [R1 = CH3, C2H5, R2= 3-BrC6H4, 4-ClC6H4]. Their reduction with sodium tetrahydridoborate yielded N-benzyl derivatives (CH3)2CHCH2CH(COOR1)NHCH2R2, which were converted into N-acyl-N-benzyl derivatives (CH3)2CHCH2CH(COOR1)N(COR3)CH2R2[R3= CH3, C6H5].  相似文献   

10.
Treatment of β-diketiminate ligands bearing different N-aryl monoatomic substituents [HLH = (C6H5)N = C(Me)CH=C(Me)NH(C6H5), HLF = (2,6-F2C6H3)N=C(Me)CH=C(Me)NH(2,6-F2C6H3), and HLCl = (2,6-Cl2C6H3)N=C(Me)CH=C(Me)NH(2,6-Cl2C6H3)] with Ln(CH2SiMe3)3(THF)2 (Ln = Y and Lu) afforded a variety of β-diketiminato rare-earth metal complexes depending on substituents, namely, phenyl ring C–H bond activated complexes (L')(LH)Lu(THF) ( 1b , L' = (C6H4)N = C(Me)CH=C(Me)N(C6H5)), six-coordinate homoleptic complexes (LH)3Ln [Ln = Y ( 1aa ), Lu ( 1bb )], five-coordinate monoalkyl complexes (LF)2Ln(CH2SiMe3) [Ln = Y ( 2a ), Lu ( 2b )], and four-coordinate dialkyl complexes (LCl)Ln(CH2SiMe3)2 [Ln = Y ( 3a ), Lu ( 3b )]. All these complexes were characterized with NMR spectroscopy, and lutetium complexes 1b , 1bb and 3b were structurally validated by single-crystal X-ray diffraction analysis. Moreover, dialkyl complexes 3 promoted the polymerization of 2-vinylpyridine (2-VP) to produce atactic poly(2-vinylpyridine) (P2VP) with quantitative yield. On activation with an equimolar amount of [Ph3C][B(C6F5)4], complexes 3 afforded highly isotactic P2VP with an mm value up to 94 %. Both 1H NMR spectrum and MALDI-TOF mass analysis of an oligomer indicate that the polymerization was initiated by coordination insertion of 2-VP into the Y-CH2SiMe3 bond.  相似文献   

11.
Neighboring group participation via four-membered ring intermediates resulting in complete rearrangement occurs in the methanolysis of R1R2C(SCH2C6H5)CH2CH(R3)OTs when R1=R2=R3=Me and when R1=R2=Me, R3=H. No rearrangement is found for R1=R2=R3=H or R1=R2=H, R3=Me. The case of R1=Me, R2=R3=H is intermediate.  相似文献   

12.
NewN,N′-bis- andN,N,N′, N′-tetrakis-hydroxyalkyl-substituted 1,4-cubanedicarboxamides were synthesized. Nitration of these compounds yielded the corresponding nitrates. The reaction of 1,4-cubanedicarboxylic acid dichloride with ethylene glycol mononitrate and glycerol dinitrate gave ester 1,4-[R1R2CHOC(O)]2C8H6, where R1=H and R2=CH2ONO2; and R1=R2=CH2ONO2, respectively. The cardiopharmacological activity of some of the synthesized compounds was determined. This allowed us to find for the first time cubane derivatives that exhibit this kind of biological activity. The antiischemic activity of one of these compounds,N,N′-bis(2-nitroxythyl)-1,4-cubanedicarboxdiamide, is higher than that of the well-known Nicorandil. For Part 2, see Ref. 1. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1169–1172, June, 1998.  相似文献   

13.
Hydrogenolysis of alkyl‐substituted cyclopentadienyl (CpR) ligated thorium tribenzyl complexes [(CpR)Th(p‐CH2‐C6H4‐Me)3] ( 1 – 6 ) afforded the first examples of molecular thorium trihydrido complexes [(CpR)Th(μ‐H)3]n (CpR=C5H2(tBu)3 or C5H2(SiMe3)3, n=5; C5Me4SiMe3, n=6; C5Me5, n=7; C5Me4H, n=8; 7 – 10 and 12 ) and [(Cp#)12Th13H40] (Cp#=C5H4SiMe3; 13 ). The nuclearity of the metal hydride clusters depends on the steric profile of the cyclopentadienyl ligands. The hydrogenolysis intermediate, tetra‐nuclear octahydrido thorium dibenzylidene complex [(Cpttt)Th(μ‐H)2]4(μ‐p‐CH‐C6H4‐Me)2 (Cpttt=C5H2(tBu)3) ( 11 ) was also isolated. All of the complexes were characterized by NMR spectroscopy and single‐crystal X‐ray analysis. Hydride positions in [(CpMe4)Th(μ‐H)3]8 (CpMe4=C5Me4H) were further precisely confirmed by single‐crystal neutron diffraction. DFT calculations strengthen the experimental assignment of the hydride positions in the complexes 7 to 12 .  相似文献   

14.
Abstract

Chemical structure-antimicrobian activity correlation in a thyophosphoric arysulphonamide class were estabilishedl. The aim of this paper is to present new compounds of same type: p-substituted arylsulphonylamides of amidothiophosphonic acids, I; N-methyl and S-methyl derivatives of them, II and respectively III, synthesyzed by schemes 1 and 2(R?=CC8H11, C6H5; NR2=N(CH3)2, N(C2H5)2, N(C2H4)2O; X=F, Cl, Br, H, CH3, OCH3).  相似文献   

15.
Electron attachment reactions and negative ion mass spectra which were obtained under negative chemical ionization conditions have been examined for a series of 21 nickel(II) bis-chelates of formula Ni[R1CXCHCYR2]2. Three ligand donor atom sets (X, Y), respectively O4, O2S2, S4 were investigated for each of the substituent combinations, viz.: R1=CH3, CF3 or C2H5O, R2=CH3; R1=C6H5, CH3 or CF3, R2=C6H5; and R1 = R2 = tert?C4H9. While the ligand substituent combinations exerted considerable influence over the various ion decomposition reactions, the relative molecular ion stabilities were largely dependent on the ligand donor atom sets and followed the sequence O4? O2S2>S4 for most substituent combinations. Rationalizations are offered in terms of reductive electron capture reactions involving metal-based orbitals, as well as the increasing stabilities of reaction products as sulphur is incorporated into the ligand donor atom sets. A comparison is also given of negative ion mass spectral data obtained under electron impact conditions as well as negative chemical ionization conditions when methane was used as an electron energy moderating gas.  相似文献   

16.
Protonation of the trimethylenemethane derivatives, Cp*Zr(σ2,π-C4H6)[N(R1)C(Me)N(R2)] (1a: R1=R2=i-Pr and 1b: R1=Et, R2=t-Bu) (Cp*=η5-C5Me5), by [PhNMe2H][B(C6F5)4] in chlorobenzene at −10 °C provides the cationic methallyl complexes, Cp*Zr(η3-C4H7)[N(R1)C(Me)N(R2)] (2a: R1=R2=i-Pr and 2b: R1=Et, R2=t-Bu), which are thermally robust in solution at elevated temperatures as determined by 1H NMR spectroscopy. Addition of B(C6F5)3 to 1a and 1b provides the zwitterionic allyl complexes, Cp*Zr{η3-CH2C[CH2B(C6F5)3]CH2}[N(R1)C(Me)N(R2)] (3a: R1=R2=i-Pr and 3b: R1=Et, R2=t-Bu). The crystal structures of 2b and 3a have been determined. Neither the cationic complexes 2 or the zwitterionic complexes 3 are active initiators for the Ziegler-Natta polymerization of ethylene and α-olefins.  相似文献   

17.
Phosphine-sulfonate based palladium is one of the most extensively studied catalyst systems in olefin polymerization.This type of catalyst features six-membered chelate ring size,and can enable the copolymerizations of ethylene with a wide variety of polar monomers.In this contribution,we decide to investigate the influence of chelate ring size on the properties of phosphinesulfonate palladium catalysts.As such,a series of phosphine-sulfonate ligands and the corresponding seven-membered ring Pd(II)complexes[κ~2-(P,O)-2-(CH_2-PR_1R_2)-4-methylphenyl-sulfonato]Pd(Me)(DMSO)(Pd1,R_1=R_2=Cy,Pd2,R_1=R_2=o-Me O-C_6H_4;Pd3,R_1=Ph,R_2=2-[2,6-(Me O)_2C_6H_3]C_6H_4;DMSO=dimethyl sulfoxide)were designed,prepared and characterized.These palladium complexes are moderately active when they were applied in ethylene polymerization and copolymerizations with methyl acrylate and butyl vinyl ether.However,their properties are greatly reduced from those of the classic six-membered ring phosphine-sulfonate palladium complex Pd2′.The experimental results indicate that the bigger chelate ring size can increase the ligand flexibility and damage the catalytic properties for the phosphine-sulfonate type palladium catalysts.  相似文献   

18.
Treatment of (RH2C)2C5H3N-2,6 (R=SiMe3) with BunLi followed by addition of Me3SiCl gave the tetrasilyl pyridine derivative (R2HC)2C5H3N-2,6 1 in high yield. Further lithiation of 1 with BunLi and reaction of the intermediate with PhCN led to the new lithium-1-azaallyl [Li{N(R)C(Ph)C(R)(C5H3N-2,6)(CHR2)}]22, while metallation of the previously described di-lithium compounds [Li{N(R)C(R)CH}2(C5H3-2,6)]Li(tmen)n (R=SiMe3, R=But, n=1 or R=SiMe3, R=Ph, n=2) with PdCl2(PhCN)2 yielded the novel metallacycles [Pd{{N(H)(R)C(R)CH}{N(SiMe2CH2)C(R)CH}C5H3N-2,6}] 3 (R=But) and [Pd{{N(R)C(R)CH}{N(R)(H)C(R)CH}C5H3N-2,6}2] (R=Ph) 4 in moderate to low yield. Compound 3 is unusual in being the first example of a crystallographically characterised PdNSiC heterocycle which is believed to be formed via an intramolecular CH-activation of a trimethylsilyl group by Pd(II). All four compounds were fully characterised by NMR-spectroscopy, microanalysis (not 4) and X-ray diffraction.  相似文献   

19.
Organometallic Compounds of the Lanthanides. 139 Mixed Sandwich Complexes of the 4 f Elements: Enantiomerically Pure Cyclooctatetraenyl Cyclopentadienyl Complexes of Samarium and Lutetium with Donor‐Functionalized Cyclopentadienyl Ligands The reactions of [K{(S)‐C5H4CH2CH(Me)OMe}], [K{(S)‐C5H4CH2CH(Me)NMe2}] and [K{(S)‐C5H4CH(Ph)CH2NMe2}] with the cyclooctatetraenyl lanthanide chlorides [(η8‐C8H8)Ln(μ‐Cl)(THF)]2 (Ln = Sm, Lu) yield the mixed cyclooctatetraenyl cyclopentadienyl lanthanide complexes [(η8‐C8H8)Sm{(S)‐η5 : η1‐C5H4CH2CH(Me)OMe}] ( 1 a ), [(η8‐C8H8)Ln{(S)‐η5 : η1‐C5H4CH2CH(Me)NMe2}] (Ln = Sm ( 2 a ), Lu ( 2 b )) and [(η8‐C8H8)Ln{(S)‐η5 : η1‐C5H4CH(Ph)CH2NMe2}] (Ln = Sm ( 3 a ), Lu ( 3 b )). For comparison, the achiral compounds [(η8‐C8H8)Ln{η5 : η1‐C5H4CH2CH2NMe2}] (Ln = Sm ( 4 a ), Lu ( 4 b )) are synthesized in an analogous manner. 1H‐, 13C‐NMR‐, and mass spectra of all new compounds as well as the X‐ray crystal structures of 3 b and 4 b are discussed.  相似文献   

20.
《Tetrahedron: Asymmetry》2001,12(6):847-852
The bioreduction of α-methyleneketones, R1C(O)C(CH2)R2 (R1=Me, Et, Pr, iso-Bu, Ph, CH2CH2Ph; R2=Cl, Me, Et, n-Pr, iso-Pr, n-Bu, n-C6H13, Ph, CH2Ph), was mediated by baker's yeast (Saccharomyces cerevisiae) to obtain the corresponding α-methylketones. The R1 and R2 groups had a significant influence on the rate and enantioselectivity of the reductions. The rate of CC bond reduction was higher than that of CO bond reduction. Only α-methyleneketones having R1=Me yielded α-methylketones in high enantioselectivity with e.e.s of 88–99%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号