首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a novel class of electrically conductive transparent materials based on multiwalled carbon nanotubes (MWCNTs). Transparent nanocomposites were fabricated by incorporating an aqueous silk fibroin solution into bacterial cellulose membranes. The transparent nanocomposites had a high transmittance in the visible and infrared regions, regardless of the bacterial cellulose fiber content, due to the nanosize effect of the bacterial cellulose nanofibrils. This phenomenon allowed the preparation of a novel electrically conductive transparent paper. The high dispersity of the MWCNTs was realized by utilizing a bacterial cellulose membrane as a template to deposit them uniformly, thereby achieving electrically conductive transparent papers with outstanding optical transparency. The light transmittance and electrical conductivity varied according to the concentration of the MWCNT dispersion. Good optimal transparency and electrical properties were obtained with a light transmittance of 70.3% at 550 nm and electrical conductivity of 2.1 × 10?3 S/cm when the electrically conductive transparent paper was fabricated from a 0.02 wt % aqueous MWCNT dispersion. In addition, the electrically conductive transparent papers showed remarkable flexibility without any loss of their initial properties. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1235–1242, 2008  相似文献   

2.
In this study, stable and homogenous thin films of multiwalled carbon nanotubes (MWCNTs) were obtained on conducting surface using ciprofloxacin (CF, fluoroquinolone antibiotic) as an effective-dispersing agent. Further, MWCNTs/CF film modified electrodes (glassy carbon and indium tin oxide-coated glass electrode) are used successfully to study the direct electrochemistry of proteins. Here, cytochrome C (Cyt-C) was used as a model protein for investigation. A MWCNTs/CF film modified electrode was used as a biocompatible material for immobilization of Cyt-C from a neutral buffer solution (pH 7.2) using cyclic voltammetry (CV). Interestingly, Cyt-C retained its native state on the MWCNTs/CF film. The Cyt-C adsorbed MWCNTs/CF film was characterized by scanning electron microscopy (SEM), UV–visible spectrophotometry (UV-vis) and CV. SEM images showed the evidence for the adsorption of Cyt-C on the MWCNTs/CF film, and UV–vis spectrum confirmed that Cyt-C was in its native state on MWCNTs/CF film. Using CV, it was found that the electrochemical signal of Cyt-C was highly stable in the neutral buffer solution and its redox peak potential was pH dependent. The formal potential (−0.27 V) and electron transfer rate constant (13 ± 1 s−1) were calculated for Cyt-C on MWCNTs/CF film modified electrode. A potential application of the Cyt-C/MWCNTs/CF electrode as a biosensor to monitor H2O2 has been investigated. The steady-state current response increases linearly with H2O2 concentration from 2 × 10−6 to 7.8 × 10−5 M. The detection limit for determination of H2O2 has been found to be 1.0 × 10−6 M (S/N = 3). Thus, Cyt-C/MWCNTs/CF film modified electrode can be used as a biosensing material for sensor applications.  相似文献   

3.
A p-duroquinone (tetramethyl-p-benzoquinone) modified carbon paste electrode (DMCPE) was employed to study the electrocatalytic reduction of nitrite in aqueous solutions using cyclic voltammetry (CV), double potential-step chronoamperometry, and differential pulse voltammetry (DPV). It has found that under an optimum condition (pH 1.00), the reduction of nitrite at the surface of DMCPE occurs at a potential of about 660 mV less negative than that of an unmodified carbon paste electrode (CPE). The catalytic rate constant, kh, based on Andrieux and Saveant theoretical model was calculated as for scan rate 10 mV s-1. Also, the apparent diffusion coefficient, D app, was found as 2.5 × 10–10 and 3.61 × 10–5 cm2 s-1 for p-duroquinone in carbon paste matrix and nitrite in aqueous buffered solution, respectively. The values for αnα were estimated to be −0.65 and −0.19 for the reduction of nitrite at the surface of DMCPE and CPE, respectively. The electrocatalytic reduction peak currents showed a linear dependence on the nitrite concentration, and a linear analytical curve was obtained in the ranges of 5.0 × 10–5 M to 8.0 × 10–3 M and 6.0 × 10–6 M to 8.0 × 10–4 M of nitrite concentration with CV and DPV methods, respectively. The detection limits (2σ) were determined as 2.5 × 10–5 M and 4.3 × 10–6 M by CV and DPV methods. This method was also applied as a simple, selective and precise method for determination of nitrite in real samples (the weak liquor from the wood and paper factory of Mazandaran province in Iran) by using a standard addition method.  相似文献   

4.
Chinese nonmulberry temperate oak tasar/tussah, Antheraea pernyi (Ap) silk is a natural biopolymer that has attracted considerable attention as a biomaterial. The proteinaceous components of Ap silk proteins, namely fibroin and sericin may represent an alternative over mulberry Bombyx mori silk proteins. In fact, the silk fibroin (SF) of Ap is rich in Arginyl‐Glycyl‐Aspartic acid (RGD) peptides, which facilitate the adhesion and proliferation of various cell types. The possibility of processing Ap silk proteins into different distinct 2D‐ and 3D‐based matrices is described in earlier studies, such as membranes, nanofibers, scaffolds, and micro/nanoparticles, contributing to a different rate of degradation, mechanical properties, and biological performance useful for various biomedical applications. This review summarizes the current advances and developments on nonmulberry Chinese oak tasar silk protein (fibroin and sericin)‐based biomaterials and their potential uses in tissue engineering, regenerative medicine, and therapeutic delivery strategies.  相似文献   

5.
Summary.  The van der Pauw method has been applied to conductivity relaxation experiments on YBa2Cu3O6+δ at 600°C in order to determine the chemical diffusion coefficient as a function of the oxygen partial pressure in the surrounding atmosphere (100 > p O 2/bar > 10−3). It is shown that the van der Pauw technique is suitable for monitoring the conductivity relaxation when the oxygen diffusion is perpendicular to the direct current flowing through the sample in accordance with the van der Pauw geometry using thin tablets as samples. The oxygen partial pressure is changed stepwise (generally Δlogp O 2 ≤ 0.5) by employing appropriate gas mixtures as well as an electrochemical oxygen pump device. An evaluation formula is given for the determination of the chemical diffusion coefficient neglecting slow surface processes. In addition, the electronic conductivity of YBa2Cu3O6+δ has been measured at 600°C as a function of oxygen partial pressure of the ambient atmosphere (100 > p O 2/bar > 10−5) by means of the van der Pauw method applying the same experimental set-up. Typical values of the chemical diffusion coefficient are in the range of 10−6 cm2·s−1; the results of the conductivity measurements are interpreted in terms of an appropriate defect model. Received May 30, 2000. Accepted June 8, 2000  相似文献   

6.
Newly developed, simple, low-cost and sensitive ion-selective electrodes have been proposed for determination of some antiepileptic drugs such as lamotrigine, felbamate, and primidone in their pharmaceutical preparations as well as in biological fluids. The electrodes are based on poly(vinyl chloride) membranes doped with drug–tetraphenyl borate (TPB) or drug–phosphotungstic acid (PT) ion-pair complexes as molecular recognition materials. The novel electrodes displayed rapid Nernstian responses with detection limits of approximately 10−7 M. Calibration graphs were linear over the ranges 5.2 × 10−7–1.0 × 10−3, 1.5 × 10−6–1.0 × 10−3, and 2.6 × 10−7–1.0 × 10−3 M for drug–TPB and 5.8 × 10−7–1.0 × 10−3, 1.8 × 10−7–1.0 × 10−3, and 6.6 × 10−7–1.0 × 10−3 M for drug–PT electrodes, respectively, with slopes ranging from 52.3 to 62.3 mV/decade. The membranes developed have potential stability for up to 1 month and proved to be highly selective for the drugs investigated over other ions and excipients. The results show that the selectivity of the ion-selective electrodes is influenced significantly by the plasticizer. The proposed electrodes were successfully applied in the determination of these drugs in pharmaceutical preparations in four batches of different expiry dates. Statistical Student’s t test and F test showed insignificant systematic error between the ion-selective electrode methods developed and a standard method. Comparison of the results obtained using the proposed electrodes with those found using a reference method showed that the ion-selective electrode technique is sensitive, reliable, and can be used with very good accuracy and high percentage recovery without pretreatment procedures of the samples to minimize interfering matrix effects. Figure Structure of lamotrigine, felbanate and primidone  相似文献   

7.
A mercaptoacetic acid (MAA)-modified cadmium sulfide (CdS) nanoparticle was synthesized in aqueous solution and used as an oligonucleotide label for the electrochemical detection of nopaline synthase (NOS) terminator gene sequence. The carboxyl groups on the surface of the CdS nanoparticle can be easily covalently linked with NH2-modified NOS oligonucleotide probe sequences. The target ssDNA sequence was fixed onto the electrode surface by covalently linking to a mercaptoethanol self-assembled gold electrode, and the DNA hybridization of target ssDNA with probe ssDNA was accomplished on the electrode surface. The CdS nanoparticles anchored on the hybrids were dissolved in the solution by the oxidation with HNO3 and further detected by a sensitive differential pulse anodic stripping voltammetric method. The detection results can be used for monitoring the hybridization, and the NOS target sequence was satisfactorily detected in the approximate range from 8.0 × 10−12 to 4.0 × 10−9 mol L−1 with a detection limit of 2.75 × 10−12 mol L−1 (3σ). The established method extended the nanoparticle-labeled electrochemical DNA analysis to genetically modified organisms (GMOs) specific sequence samples with higher sensitivity and selectivity.  相似文献   

8.
The electrocatalytic oxidation of glutathione (GSH) has been studied at the surface of ferrocene-modified carbon paste electrode (FMCPE). Cyclic voltammetry (CV), double potential step chronoamperometry, and differential pulse voltammetry (DPV) techniques were used to investigate the suitability of incorporation of ferrocene into FMCPE as a mediator for the electrocatalytic oxidation of GSH in buffered aqueous solution. Results showed that pH 7.00 is the most suitable for this purpose. In the optimum condition (pH 7.00), the electrocatalytic ability of about 480 mV can be found and the heterogeneous rate constant of catalytic reaction was calculated as . Also, the diffusion coefficient of glutathione, D, was found to be 3.61 × 10–5 cm2 s−1. The electrocatalytic oxidation peak current of glutathione at the surface of this modified electrode was linearly dependent on the GSH concentration and the linear analytical curves were obtained in the ranges of 3.2 × 10–5 M–1.6 × 10–3 M and 2.2 × 10–6 M–3.5 × 10–3 M with cyclic voltammetry and differential pulse voltammetry methods, respectively. The detection limits (3σ) were determined as 1.8 × 10–5 M and 2.1 × 10–6 M using CV and DPV, respectively. Finally, the electrocatalytic oxidation of GSH at the surface of this modified electrode can be employed as a new method for the voltammetric determination of glutathione in real samples such as human plasma.  相似文献   

9.
A simple, rapid, sensitive, and accurate method for simultaneous electrochemical determination of procaine and its metabolite (p-aminobenzoic acid, PABA) for pharmaceutical quality control and pharmacokinetic research was developed using a graphite paste electrode. The differential pulse voltammetric results revealed that procaine and p-aminobenzoic acid, respectively, showed well-defined anodic oxidation peaks on a carbon paste electrode with a current peak separation of 155 mV at a scan rate of 100 mV s−1. This well separation of the current peaks for these two compounds in voltammetry enables us to simultaneously determine them. Good linearity (r > 0.998) between oxidation peak current and concentration was obtained in the range of 5.0 × 10−7–5.0 × 10−5 M for procaine and 5.0 × 10−7–2.0 × 10−5 M for PABA in pH 4.50 acetate buffer solution. The detection limit for both analytes is 5 × 10−8 M (S/N = 3:1). The present voltammetric method has been successfully used to determine trace p-aminobenzoic acid in procaine hydrochloride injection and procaine in plasma with a linear relationship of current to its concentration ranging from 1.0 × 10−6 to 5.0 × 10−5 M (correlation coefficient of 0.9981) with a low detection limit of 5.0 × 10−7 M (S/N = 3:1). This validated method is promising to the study of pharmacokinetics in Sprague–Dawley rat and rabbit plasma after an intravenous administration of procaine hydrochloride injection.  相似文献   

10.
Olivine-structured LiCoPO4 is synthesized by a Pechini-type polymer precursor method. The structure and the morphology of the compounds are studied by the Rietveld-refined X-ray diffraction, scanning electron microscopy, Brunauer, Emmett, and Teller surface area technique, infrared spectroscopy, and Raman spectroscopy techniques, respectively. The ionic conductivity (σ ionic), dielectric, and electric modulus properties of LiCoPO4 are investigated on sintered pellets by impedance spectroscopy in the temperature range, 27–50 °C. The σ (ionic) values at 27 and 50 °C are 8.8 × 10−8 and 49 × 10−8 S cm−1, respectively with an energy of activation (E a) = 0.43 eV. The electric modulus studies suggest the presence of non-Debye type of relaxation. Preliminary charge–discharge cycling data are presented.  相似文献   

11.
Functionalized polypyrrole films were prepared by incorporation of Fe(CN)6 3− as doping anion during the electropolymerization of pyrrole at a glassy carbon electrode from aqueous solution. The electrochemical behavior of the Fe(CN)6 3−/Fe(CN)6 4− redox couple in polypyrrole was studied by cyclic voltammetry. An obvious surface redox reaction was observed and dependence of this reaction on the solution pH was illustrated. The electrocatalytic ability of polypyrrole film with ferrocyanide incorporated was demonstrated by oxidation of ascorbic acid at the optimized pH of 4 in a glycine buffer. The catalytic effect for mediated oxidation of ascorbic acid was 300 mV and the bimolecular rate constant determined for surface coverage of 4.5 × 10−8 M cm−2 using rotating disk electrode voltammetry was 86 M−1 s−1. Furthermore, the catalytic oxidation current was linearly dependent on ascorbic acid concentration in the range 5 × 10−4–1.6 × 10−2 M with a correlation coefficient of 0.996. The plot of i p versus v 1/2 confirms the diffusion nature of the peak current i p. Received: 12 April 1999 / Accepted: 25 May 1999  相似文献   

12.
The synthesis and methods applied for the purification of dodecyl-, tetradecyl-, and hexadecyldimethylphenylammonium bromides are described. The results of surface tension measurements of aqueous solutions of these surfactants show that slight amounts of strongly surface-active nonionic impurities are persistent in the crystalline materials presumably due to their low thermal stability. The Critical micelle concentration (cmc) and the degree of ionization (β) of the micelles of the salts studied in aqueous solutions were determined at 25 °C from specific conductivity versus molality plots. The temperature dependence of the cmc and of β of the tetradecyl homologue was measured in the range 4–34 °C. A minimum cmc amounting to 1.20 mmol/kg was determined at about 14 °C. The values of β were found to grow linearly with temperature. From these results, the standard Gibbs energy, the enthalpy and the entropy of the process of micellization were obtained by application of the pseudo-phase-separation model. Enthalpy and entropy show a compensation effect in their contribution to the Gibbs energy. At low temperatures the process of micellization is driven mainly by the entropic term, whereas with increasing temperature the enthalpic term becomes predominant. At the temperature of the minimum cmc, the value of the enthalpy is far from being zero because of the important contribution of the (β/T)R ln X cmc term. Received: 27 July 1998 Accepted in revised form: 15 December 1998  相似文献   

13.
The surface property of an amphiphilic cyclodextrin 2-O-(hydroxypropyl-N,N-dimethyl-N-dodecylammonio)-β-cyclodextrin (HPDMA-C12-CD) was investigated using oscillating bubble rheometer and electrical conductivity method at different temperatures. The surface tension and dilational viscoelasticity of HPDMA-C12-CD were provided. The results showed that HPDMA-C12-CD could adsorb on the air–water interface, which decreased the surface tension of water efficiently. Critical micelle concentration (cmc) can be clearly defined from the surface tension isotherm. pC20 and π cmc were derived from the surface tension isotherms as well. The thermodynamic parameters (ΔG   0 m  , ΔH   0 m  , −TΔS   0 m) derived from electrical conductivity indicated that the micellization of HPDMA-C12-CD was entropy-driven at lower temperature, while it was enthalpy-driven at higher temperature. The dilational modulus appeared a maximum value while the phase angle appeared two maxima as a function of HPDMA-C12-CD concentration.  相似文献   

14.
Various iodide ion conducting polymer electrolytes have been studied as candidate materials for fabricating photoelectrochemical (PEC) solar cells and energy storage devices. In this study, enhanced ionic conductivity values were obtained for the ionic liquid tetrahexylammonium iodide containing polyethylene oxide (PEO)-based plasticized electrolytes. The analysis of thermal properties revealed the existence of two phases in the electrolyte, and the conductivity measurements showed a marked conductivity enhancement during the melting of the plasticizer-rich phase of the electrolyte. Annealed electrolyte samples showed better conductivity than nonannealed samples, revealing the existence of hysteresis. The optimum conductivity was shown for the electrolytes with PEO:salt = 100:15 mass ratio, and this sample exhibited the minimum glass transition temperature of 72.2 °C. For this optimum PEO to salt ratio, the conductivity of nonannealed electrolyte was 4.4 × 10−4 S cm−1 and that of the annealed sample was 4.6 × 10−4 S cm−1 at 30 °C. An all solid PEC solar cell was fabricated using this annealed electrolyte. The short circuit current density (I SC), the open circuit voltage (V OC), and the power conversion efficiency of the cell are 0.63 mA cm−2, 0.76 V, and 0.47% under the irradiation of 600 W m−2 light.  相似文献   

15.
Gold nanoparticles (GNs) could be efficiently immobilized on binary mixed self-assembled monolayers (SAMs) on a gold surface composed of 1,6-hexanedithiol and 1-octanethiol (nano-Au/SAMs gold electrode). This GN chemically modified electrode was used for electrochemical determination of ascorbic acid (AA) and dopamine (DA) in aqueous media. The result showed that the GN-modified electrode could clearly resolve the oxidation peaks of AA and DA, with a peak-to-peak separation (∆E p) of 110 mV enabling determination of AA and DA in the presence of each other. The linear analytical curves were obtained in the ranges of 0.3–1.4 mM for AA and 0.2–1.2 mM for DA concentrations using differential pulse voltammetry. The detection limits (3σ) were 9.0 × 10−5 M for AA and 9.0 × 10−5 M for DA.  相似文献   

16.
The successful incorporation of multiwalled carbon nanotubes (MWCNTs) into silica aerogels prepared by sol–gel method is reported herein. Pure silica aerogels prepared using sodium silicate precursor by ambient pressure drying are so fragile that they cannot be used easily. MWCNTs were used as reinforcements to improve the mechanical properties of silica aerogels. Results show that inserting small amounts of MWCNTs in the gels causes enhanced dimensional stability of silica aerogels. The silica aerogels were prepared by doping MWCNTs in silica matrix before gelation. The influence of MWCNTs on some microstructural aspects of silica matrix has been studied using nitrogen adsorption–desorption isotherms. From SEM study it is confirmed that the silica particles get capped on the surface of MWCNTs suggesting an enhanced toughness. Further, FTIR, Raman, EDAX, thermal conductivity and hydrophobicity studies of these doped aerogels were carried out. By addition of MWCNTs, silica aerogels were formed with 706 m2/g BET and 1,200 m2/g Langmuir surface areas and 149o contact angle. Low density (0.052 g/cc) and low thermal conductivity (0.067 W/m K) MWCNTs doped silica aerogels were obtained for the molar ratio of Na2SiO3::H2O::MWCNTs::citric acid::TMCS at 1::146.67::2.5 × 10−3::0.54::9.46 respectively with improved mechanical strength.  相似文献   

17.
Solid composite polymer electrolytes consisting of polyethylene oxide (PEO), LiClO4, and porous inorganic–organic hybrid poly (cyclotriphosphazene-co-4, 4′-sulfonyldiphenol) (PZS) nanotubes were prepared using the solvent casting method. Differential scanning calorimetry and scanning electron microscopy were used to determine the characteristics of the composite polymer electrolytes. The ionic conductivity, lithium ion transference number, and electrochemical stability window can be enhanced after the addition of PZS nanotubes. The electrochemical impedance showed that the conductivity was improved significantly. Maximum ionic conductivity values of 1.5 × 10−5 S cm−1 at ambient temperature and 7.8 × 10−4 S cm−1 at 80 °C were obtained with 10 wt.% content of PZS nanotubes, and the lithium ion transference number was 0.35. The good electrochemical properties of the solid-state composite polymer electrolytes suggested that the porous inorganic–organic hybrid polyphosphazene nanotubes had a promising use as fillers in SPEs and the PEO10–LiClO4–PZS nanotube solid composite polymer electrolyte might be used as a candidate material for lithium polymer batteries.  相似文献   

18.
Poly(ethylene oxide) (PEO) oligomers having alkali metal thiolate groups on the chain ends (PEO m -SM+) were prepared as an ion conductive matrix. The molecular weight of the PEO part (m) and the content of the thiolate groups in the molecule were changed to analyze the effect of carrier ion concentration in the bulk. In a series of potassium salt derivatives, PEO350-SK showed the highest ionic conductivity of 6.42 × 10−5 S/cm at 50 °C. In spite of a poor degree of dissociation which was derived from the acidity of the thiolate groups, PEO m -SM showed quite high ionic conductivity among other PEO/salt hybrids. PEO m -SM had glass transition temperatures (T g) 20 °C lower than other PEO/salt hybrids. Lowering the T g was concluded to be effective in providing higher ionic conductivity for PEO-based polymer electrolytes. Received: 30 April 1999 / Accepted: 20 June 1999  相似文献   

19.
New poly (vinylidenefluoride-co-hexafluoro propylene) (PVDF-HFP)/CeO2-based microcomposite porous polymer membranes (MCPPM) and nanocomposite porous polymer membranes (NCPPM) were prepared by phase inversion technique using N-methyl 2-pyrrolidone (NMP) as a solvent and deionized water as a nonsolvent. Phase inversion occurred on the MCPPM/NCPPM when it is treated by deionized water (nonsolvent). Microcomposite porous polymer electrolytes (MCPPE) and nanocomposite porous polymer electrolytes (NCPPE) were obtained from their composite porous polymer membranes when immersed in 1.0 M LiClO4 in a mixture of ethylene carbonate/dimethyl carbonate (EC/DMC) (v/v = 1:1) electrolyte solution. The structure and porous morphology of both composite porous polymer membranes was examined by scanning electron microscope (SEM) analysis. Thermal behavior of both MCPPM/NCPPM was investigated from DSC analysis. Optimized filler (8 wt% CeO2) added to the NCPPM increases the porosity (72%) than MCPPM (59%). The results showed that the NCPPE has high electrolyte solution uptake (150%) and maximum ionic conductivity value of 2.47 × 10−3 S cm−1 at room temperature. The NCPPE (8 wt% CeO2) between the lithium metal electrodes were found to have low interfacial resistance (760 Ω cm2) and wide electrochemical stability up to 4.7 V (vs Li/Li+) investigated by impedance spectra and linear sweep voltammetry (LSV), respectively. A prototype battery, which consists of NCPPE between the graphite anode and LiCoO2 cathode, proves good cycling performance at a discharge rate of C/2 for Li-ion polymer batteries.  相似文献   

20.
The redox characteristics of the drug domperidone at a glassy-carbon electrode (GCE) in aqueous media were critically investigated by differential-pulse voltammetry (DPV) and cyclic voltammetry (CV). In Britton–Robinson (BR) buffer of pH 2.6–10.3, an irreversible and diffusion-controlled oxidation wave was developed. The dependence of the CV response of the developed anodic peak on the sweep rate (ν) and on depolizer concentration was typical of an electrode-coupled chemical reaction mechanism (EC) in which an irreversible first-order reaction is interposed between the charges. The values of the electron-transfer coefficient (α) involved in the rate-determining step calculated from the linear plots of E p,a against ln (ν) in the pH range investigated were in the range 0.64 ± 0.05 confirming the irreversible nature of the oxidation peak. In BR buffer of pH 7.6–8.4, a well defined oxidation wave was developed and the plot of peak current height of the DPV against domperidone concentration at this peak potential was linear in the range 5.20 × 10−6 to 2.40 × 10−5 mol L−1 with lower limits of detection (LOD) and quantitation (LOQ) of 6.1 × 10−7 and 9.1 × 10−7 mol L−1, respectively. A relative standard deviation of 2.39% (n = 5) was obtained for 8.5 × 10−6 mol L−1 of the drug. These DPV procedures were successfully used for analysis of domperidone in the pure form (98.2 ± 3.1%), dosage form (98.35 ± 2.9%), and in tap (97.0 ± 3.6%) and wastewater (95.0 ± 2.9%) samples. The method was validated by comparison with standard titrimetric and HPLC methods. Acceptable error of less than 3.3 % was also achieved. Figure In aqueous media at pH 7.6- 8.4, the DPV and cyclic voltammetry of the drug domperidone (I) at GCE showed an irreversible and diffusion controlled oxidation wave. The values of the electron transfer coefficient (α) involved in the rate determining step were found in the range 0.64± 0.05 confirming the irreversible nature of the peak. The analysis of the drug in pure form and in wastewater samples was successfully achieved  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号