首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of smoothed projections, constructed by combining the canonical interpolation operators defined from the degrees of freedom with a smoothing operator, has proved to be an effective tool in finite element exterior calculus. The advantage of these operators is that they are bounded projections, and still they commute with the exterior derivative. In the present paper we generalize the construction of these smoothed projections, such that also non-quasi-uniform meshes and essential boundary conditions are covered. The new tool introduced here is a space-dependent smoothing operator that commutes with the exterior derivative.

  相似文献   


2.
We consider a system of partial differential equations which models flows through elastic porous media. This system consists of an elasticity equation describing the displacement of an elastic porous matrix and a quasilinear elliptic equation describing the pressure of the saturating fluid (flowing through its pores). In this model, the permeability depends nonlinearly on the dilatation (divergence of the displacement) of the medium. We show that the solution has regularity. We describe the numerical approximation of solutions using a hybrid finite element‐least squares mixed finite element method. Error estimates are obtained through the introduction of an auxiliary linear elasticity equation. Numerical experiments verify the error estimates and validate the proposed poroelasticity model. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1174–1189, 2015  相似文献   

3.
Finite element approximations of eddy current problems thatare entirely based on the magnetic field H are haunted by theneed to enforce the algebraic constraint curl H=0 in non-conductingregions. As an alternative to techniques employing combinatorialSeifert (cutting) surfaces, in order to introduce a scalar magneticpotential we propose mixed multi-field formulations, which enforcethe constraint in the variational formulation. In light of thefact that the computation of cutting surfaces is expensive,the mixed finite element approximation is a viable option despitethe increased number of unknowns.  相似文献   

4.
This article is concerned with the equations governing the steady motion of a viscoelastic incompressible second‐order fluid in a bounded domain. A new proof of existence and uniqueness of strong solutions is given. In addition, using appropriate finite element methods to approximate a coupled equivalent problem, sharp error estimates are obtained using a fixed point argument. The method is applied to the two‐dimensional lid‐driven cavity problem, at low Reynolds number and in a certain range of values of the viscoelastic parameters, to analyze the combined effects of inertia and viscoelasticity on the flow. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

5.
We present a second‐order finite difference scheme for approximating solutions of a mathematical model of erythropoiesis, which consists of two nonlinear partial differential equations and one nonlinear ordinary differential equation. We show that the scheme achieves second‐order accuracy for smooth solutions. We compare this scheme to a previously developed first‐order method and show that the first order method requires significantly more computational time to provide solutions with similar accuracy. We also compare this numerical scheme with other well‐known second‐order methods and show that it has better capability in approximating discontinuous solutions. Finally, we present an application to recovery after blood loss. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

6.
We present a computer-assisted proof of positivity of sums over kernel polynomials for ultraspherical Jacobi polynomials.  相似文献   

7.
In this paper we extend in 3D a 2D Lagrange finite element technique proposed previously in Guermond and Minev (Mod. Math. Anal. Num. 2001) for solving the Maxwell equations in the low‐frequency limit in a domain composed of conducting and insulating regions. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 709–731, 2003.  相似文献   

8.
This paper discusses a class of quadratic immersed finite element (IFE) spaces developed for solving second order elliptic interface problems. Unlike the linear IFE basis functions, the quadratic IFE local nodal basis functions cannot be uniquely defined by nodal values and interface jump conditions. Three types of one dimensional quadratic IFE basis functions are presented together with their extensions for forming the two dimensional IFE spaces based on rectangular partitions. Approximation capabilities of these IFE spaces are discussed. Finite element solutions based on these IFE for representative interface problems are presented to further illustrate capabilities of these IFE spaces. Dedicated to the 60th birthday of Charles A. Micchelli Mathematics subject classifications (2000) 65N15, 65N30, 65N50, 65Z05. Yanping Lin: Supported by NSERC. Weiwei Sun: This work was supported in part by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (project CityU 1141/01P).  相似文献   

9.
In this paper, we extend the approach developed by the author for the standard finite element method in the L‐norm of the noncoercive variational inequalities (VI) (Numer Funct Anal Optim.2015;36:1107‐1121.) to impulse control quasi‐variational inequality (QVI). We derive the optimal error estimate, combining the so‐called Bensoussan‐Lions Algorithm and the concept of subsolutions for VIs.  相似文献   

10.
Results of the theoretical and numerical studies of an algorithm based on the combined use of the finite element and finite superelement methods are presented. Estimates of the errors for one of the variants of the method applied to solving the Laplace equation are obtained. The method can be used to solve a problem concerning the skin layer appearing due to high velocities.  相似文献   

11.
In this article, we extend the recently developed weak Galerkin method to solve the second‐order hyperbolic wave equation. Many nice features of the weak Galerkin method have been demonstrated for elliptic, parabolic, and a few other model problems. This is the initial exploration of the weak Galerkin method for solving the wave equation. Here we successfully developed and established the stability and convergence analysis for the weak Galerkin method for solving the wave equation. Numerical experiments further support the theoretical analysis. © 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 868–884, 2017  相似文献   

12.
We derive computable a posteriori error estimates for the lowest order nonconforming Crouzeix-Raviart element applied to the approximation of incompressible Stokes flow. The estimator provides an explicit upper bound that is free of any unknown constants, provided that a reasonable lower bound for the inf-sup constant of the underlying problem is available. In addition, it is shown that the estimator provides an equivalent lower bound on the error up to a generic constant.

  相似文献   


13.
In this paper, we study positive Toeplitz operators on the Bergman space via their Berezin transforms. Surprisingly we show that the positivity of a Toeplitz operator on the Bergman space is not completely determined by the positivity of the Berezin transform of its symbol. In fact, we show that even if the minimal value of the Berezin transform of a quadratic polynomial of |z||z| on the unit disk is positive, the Toeplitz operator with the function as the symbol may not be positive.  相似文献   

14.
We study a new class of finite elements so‐called composite finite elements (CFEs), introduced earlier by Hackbusch and Sauter, Numer. Math., 1997; 75:447‐472, for the approximation of nonlinear parabolic equation in a nonconvex polygonal domain. A two‐scale CFE discretization is used for the space discretizations, where the coarse‐scale grid discretized the domain at an appropriate distance from the boundary and the fine‐scale grid is used to resolve the boundary. A continuous, piecewise linear CFE space is employed for the spatially semidiscrete finite element approximation and the temporal discretizations is based on modified linearized backward Euler scheme. We derive almost optimal‐order convergence in space and optimal order in time for the CFE method in the L(L2) norm. Numerical experiment is carried out for an L‐shaped domain to illustrate our theoretical findings.  相似文献   

15.
We present a comparison of different multigrid approaches for the solution of systems arising from high‐order continuous finite element discretizations of elliptic partial differential equations on complex geometries. We consider the pointwise Jacobi, the Chebyshev‐accelerated Jacobi, and the symmetric successive over‐relaxation smoothers, as well as elementwise block Jacobi smoothing. Three approaches for the multigrid hierarchy are compared: (1) high‐order h‐multigrid, which uses high‐order interpolation and restriction between geometrically coarsened meshes; (2) p‐multigrid, in which the polynomial order is reduced while the mesh remains unchanged, and the interpolation and restriction incorporate the different‐order basis functions; and (3) a first‐order approximation multigrid preconditioner constructed using the nodes of the high‐order discretization. This latter approach is often combined with algebraic multigrid for the low‐order operator and is attractive for high‐order discretizations on unstructured meshes, where geometric coarsening is difficult. Based on a simple performance model, we compare the computational cost of the different approaches. Using scalar test problems in two and three dimensions with constant and varying coefficients, we compare the performance of the different multigrid approaches for polynomial orders up to 16. Overall, both h‐multigrid and p‐multigrid work well; the first‐order approximation is less efficient. For constant coefficients, all smoothers work well. For variable coefficients, Chebyshev and symmetric successive over‐relaxation smoothing outperform Jacobi smoothing. While all of the tested methods converge in a mesh‐independent number of iterations, none of them behaves completely independent of the polynomial order. When multigrid is used as a preconditioner in a Krylov method, the iteration number decreases significantly compared with using multigrid as a solver. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
This paper considers a posteriori error estimates by averaged gradients in second order parabolic problems. Fully discrete schemes are treated. The theory from the elliptic case as to when such estimates are asymptotically exact, on an element, is carried over to the error on an element at a given time. The basic principle is that the elliptic theory can be extended to the parabolic problems provided the time-step error is smaller than the space-discretization error. Numerical illustrations confirming the theoretical results are given. Our results are not practical in the sense that various constants can not be estimated realistically. They are conceptual in nature. AMS subject classification (2000)  65M60, 65M20, 65M15  相似文献   

17.
This paper deals with the relationship between the positivity of the Fock Toeplitz operators and their Berezin transforms. The author considers the special case of the bounded radial function φ(z) = a + be~(-α|z|~2)+ ce~(-β|z|~2), where a, b, c are real numbers and α, β are positive numbers. For this type of φ, one can choose these parameters such that the Berezin transform of φ is a nonnegative function on the complex plane, but the corresponding Toeplitz operator Tφ is not positive on the Fock space.  相似文献   

18.
A reliable and efficient residual‐based a posteriori error estimator is derived for the Ciarlet‐Raviart mixed finite element method for the biharmonic equation on polygonal domains. The performance of the estimator is illustrated by numerical experiments. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

19.
Quadratic finite element approximation of the Signorini problem   总被引:1,自引:0,他引:1  
Applying high order finite elements to unilateral contact variational inequalities may provide more accurate computed solutions, compared with linear finite elements. Up to now, there was no significant progress in the mathematical study of their performances. The main question is involved with the modeling of the nonpenetration Signorini condition on the discrete solution along the contact region. In this work we describe two nonconforming quadratic finite element approximations of the Poisson-Signorini problem, responding to the crucial practical concern of easy implementation, and we present the numerical analysis of their efficiency. By means of Falk's Lemma we prove optimal and quasi-optimal convergence rates according to the regularity of the exact solution.

  相似文献   


20.
In this paper, we study positive Toeplitz operators on the harmonic Bergman space via their Berezin transforms. We consider the Toeplitz operators with continuous harmonic symbols on the closed disk and show that the Toeplitz operator is positive if and only if its Berezin transform is nonnegative on the disk. On the other hand, we construct a function such that the Toeplitz operator with this function as the symbol is not positive but its Berezin transform is positive on the disk. We also consider the harmonic Bergman space on the upper half plane and prove that in this case the positive Toeplitz operators with continuous integrable harmonic symbols must be the zero operator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号