首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The syn and anti isomers of axially chiral 1,8-diquinolylnaphthalenes have been synthesized via Pd-catalyzed Stille coupling of 1,8-dibromonaphthalene and 2-alkyl-4-trimethylstannylquinolines. Optimization of the cross-coupling reaction allowed the preparation of highly constrained 1,8-bis(2,2'-dimethyl-4,4'-diquinolyl)naphthalene, 2, and 1,8-bis(2,2'-diisopropyl-4,4'-diquinolyl)naphthalene, 3, in 42% and 41% yield, respectively. Employing Pd(PPh(3))(4) and CuO as the cocatalysts in the coupling reaction of 1,8-dibromonaphthalene and 2-alkyl-4-trimethylstannylquinolines proved to be superior over other catalysts such as PdCl(2)(dppf), Pd(2)(dba)(3)/P(t-Bu)(3), and POPd. The C(2)-symmetric anti isomers of 2 and 3 were found to be more stable than the corresponding meso syn isomer. The ratio of the two enantiomeric anti conformers to the syn conformer was determined as 7.9:1 for 2 and 8.6:1 for 3 by NMR and HPLC analysis. The atropisomers of 2 and 3 were found to be stable to rotation about the chiral axis at room temperature and all three stereoisomers of 2 were isolated by semipreparative HPLC on a Chiralpak AD column. The diastereoisomers of 3 were separated via preferential crystallization of the anti isomers from diethyl ether. Slow syn/anti interconversion was observed for both atropisomers at enhanced temperature, and the diastereomerization and enantiomerization processes were monitored by NMR and HPLC. The Gibbs activation energy, DeltaG++, for the isomerization of 2 was determined as 116.0 (112.1) kJ/mol for the conversion of the anti (syn) to the syn (anti) isomer at 71.0 degrees C. The rotational energy barrier of 3 was determined as 115.2 (111.1) kJ/mol for the conversion of the anti (syn) to the syn (anti) isomer at 66.2 degrees C.  相似文献   

2.
The crystal structure of 1,3,5-tris(4-methylnaphth-1-yl)benzene, 1, shows one naphthyl substituent in an anti relationship to the other two. On the other hand, low temperature (-70 degrees C) (1)H NMR spectra in solution show the presence of a second rotational conformer (rotamer) having all the three naphthyl substituents in a syn relationship. The interconversion barrier between the anti (77%) and syn (23%) rotamers of 1 was determined by line shape simulation of the temperature-dependent NMR spectra (Delta G(++) = 12.1 kcal mol(-1)). In the analogous disubstituted meta and paraderivatives, that is, 1,3- and 1,4-bis(4-methylnaphth-1-yl)benzene (2 and 3, respectively), the presence of both the anti and syn rotamers was also detected by low-temperature NMR spectroscopy. In the latter compounds, the proportions of the anti and syn forms are nearly equal, and the corresponding anti to syn interconversion barriers were found to be lower (11.4 and 11.1(5) kcal mol(-1), respectively) than those of the trisubstituted derivative 1.  相似文献   

3.
A diastereomerically enriched analogue of 1,3,5-triaza-7-phosphaadamantane (PTA) was obtained by the reaction of PTA lithium salt with benzaldehyde to give the water-soluble derivative phenyl(1,3,5-triaza-7-phosphatricyclo[3.3.1.13,7]dec-6-yl)methanol (PZA, 1) as a mixture of two diastereoisomers. PZA derivatives phenyl(1,3,5-triaza-7-phospha-tricyclo[3.3.1.13,7]dec-6-yl)methanol sulfide [PZA(S), 2] and oxide [PZA(O), 3] were also synthesized. The latter was isolated in the solid state, and the X-ray crystal structure of a single diastereoisomer was obtained. Compound 1 was used as a k1-P monodentate ligand toward iridium(III) moieties, and the piano-stool complex [Cp*IrCl2(PZA)] (4) was obtained as a mixture of diastereoisomers both in solution and in the solid state.  相似文献   

4.
《结构化学》2021,40(6)
One-dimensional(1D) chiral chain complexes [CuLSCu(Pydc)](2S) and [CuLRCu(Pydc)](2R)(LS=(E)-3-(((1S,2S)-2-(((E)-3-oxo-3-(4-pyridin-4-yl)phenyl)propylidene)amono)-1,2-diphenyl)imino)-1-(4-(pyridi-4-yl)phenyl)butan-1-one) and LR=(E)-3-(((1R,2R)-2-(((E)-3-oxo-3-(4-pyridin-4-yl)phenyl)propylidene)amono)-1,2-diphenyl)imino)-1-(4-(pyridi-4-yl)phenyl)butan-1-one and Pydc=2,6-pyridinedicarboxylic acid)have been synthesized vis mononuclear chiral enantiomer precursors CuLS(1S) and CuLR(1R).Their different chiral configurations of 1S,1R,2S and 2R were determined by single-crystal X-ray diffraction analyses and further characterized by elemental analyses,infrared spectra(IR),powder X-ray diffraction(PXRD),thermal gravimetric analyses(TGA) and circular dichroism spectra(CD).  相似文献   

5.
钱鹰  孟康  吕昌贵  黄维  崔一平 《物理化学学报》2008,24(10):1780-1784
采用非线性透过率法研究了以N为耦合中心的多枝化合物N-[4-{2-(3,5-二-[5-(4-叔丁基苯基)-1,3,4-噁二唑-2-]苯基}-1-乙烯基}苯基}-N,N-二苯胺(BPODPA), N,N-双[4-{2-(3,5-二-[5-(4-叔丁基苯基)-1,3,4-噁二唑-2-]苯基}-1-乙烯基}苯基}-N-苯胺(BBPOPA)和N,N,N-三[4-{2-(3,5-二-[5-(4-叔丁基苯基)-1,3,4-噁二唑-2]苯基}-1-乙烯基}苯基}胺(TBPOA)的双光子吸收性质, 测定了化合物的单光子荧光光谱和双光子上转换荧光光谱, 研究了多枝化对三苯胺分子双光子吸收和双光子激发荧光性质的影响.在800 nm波长的激光激发下,化合物BPODPA、BBPOPA和TBPOA在二氯甲烷溶液中发出很强的蓝绿色双光子上转换荧光, 荧光峰分别位于502、515 和518 nm. 这些多枝结构化合物的双光子吸收截面较大, 双光子吸收增强来源于多枝分子中扩展的π共轭体系和重复单元的协同效应.  相似文献   

6.
The syn and anti diastereoisomers of some 1,3,5-triarylisocyanurate derivatives were isolated and their configuration assigned by NOE experiments and by X-ray diffraction. The kinetics of the syn/anti interconversion were determined, and the experimental activation energies matched satisfactorily the values predicted by DFT computations. Low-temperature NMR spectra were employed to determine the rotation barrier of N-bonded unhindered aryl substituents: these barriers, too, are satisfactorily reproduced by DFT computations. In the case of racemic diastereoisomers, the two expected enantiomers (atropisomers) were isolated by enantioselective HPLC and the absolute configuration established by DFT simulation of the electronic and vibrational circular dichroism spectra.  相似文献   

7.
A new two-state conformational transition is proposed to explain the large, low-temperature mechanical loss peak seen in glassy polycarbonates. Restricted Hartree Fock ab initio calculations at the 6–31G7 level for diphenyl carbonate (DPC), a key model compound of bisphenol-A polycarbonate, reveal two inequivalent trans-trans carbonate-ring conformations both of which will exist in solution, melt or glassy states. These calculations appear to be the first high level ones (with full geometry optimization) reported for DPC, and the findings are consistent with earlier ab initio results for phenyl formate and other smaller model compounds and also with single-crystal X-ray data for DPC and oligomers. In addition to a trans-trans conformer of DPC with both phenyl rings on the same side of the carbonate unit (called the ‘syn’ conformer) which is seen in the crystalline state of DPC, an ‘anti’ conformer of lower energy is found, which has its two phenyl rings located on opposite sides of the plane of the carbonate unit. Analysis of these calculated ground state geometries and energies as well as experimental single crystal X-ray results indicates that the ‘anti’ conformer has the lowest energy in the gas phase and solution, while the ‘syn’ conformation is stabilized relative to the ‘anti’ in the bulk, probably because of aromatic ring interactions between neighbour chain segments. In the glassy state of either DPC or polycarbonate, one expects a nearly random mixture of ‘syn/anti’ conformers, and the prominent low-temperature mechanical loss peak observed in many polycarbonates is consistent with a molecular level two-state process consisting of ‘syn/ anti’ carbonate conformer conversions. These conformational transitions must involve rotation and translation of both the carbonate units and, most importantly, the neighbouring phenyl groups. The possible influence of these conformational changes and the accompanying correlated molecular motions on polymer ductility and ageing is briefly discussed.  相似文献   

8.
New liquid crystal compounds, (+)-4-[5-(2-methylbutyl)-1,3-dioxan-2-yl] phenyl 4-alkoxybenzoates (5), were synthesized. The mesomorphic behaviour of these compounds is compared with that of (+)-4-(5-alkyl-1,3-dioxan-2-yl)-phenyl 4-(2-methylbutoxy)benzoates (6). While compounds 6 exhibited a chiral smectic C phase, the corresponding compounds 5 did not. This might mean that for the appearance of a chiral smectic C phase in these types of compounds, it is necessary that the carbonyl and the chiral groups exist at nearby positions. Transition temperatures to those isotropic state for compounds 5 were lower than those for compounds 6. This result is common in both cases of (+)-4-alkoxycarbonylphenyl-4-[5-(2-methylbutyl)-1,3-dioxan-2-yl]benzoates (7), and (+)-4-(2-methylbutoxy-carbonyl)phenyl 4-(5-alkyl-1,3-dioxan-2-yl)-benzoates (8).  相似文献   

9.
Three novel naphthoquinone-based heterocyclic pigments, 2-methyl-3-[(1-methyl-1H-imidazol-2-yl)thio-1,4-naphthalenedione, (4-methyl-4H-1,2,4-triazol-3-yl)thio-1,4-naphthalenedione, and (1-methyl-1H-tetrazol-5-yl)thio]-1,4-naphthalenedione, are synthesized, and their optical properties in both solution and solid states are investigated. Depending on the heteroarylthio ring in the pigment, variation in optical properties is observed, e.g. characteristic colours for each pigment in the solution and solid states. The achiral pigment containing the 1-methyl-1H-tetrazol-5-yl ring exhibits a chiral space group and a CD signal in the solid state.  相似文献   

10.
Optically active disilanes with one chiral silicon center, (R)-1,2-dimethyl-1-(naphth-1-yl)-1,2,2-triphenyldisilane and (R)-1,2,2-trimethyl-2-(4-methoxynaphth-1-yl)-1-(naphth-1-yl)-1-phenyldisilane, were obtained by the reaction of (S)-methyl(naphth-1-yl)phenylchlorosilane (> 99% ee) with methyldiphenylsilyllithium or by the reaction of methyldiphenylchlorosilane with optically active (S)-methyl(naphth-1-yl)phenylsilyllithium and by the reaction of (S)-methyl(naphth-1-yl)phenylchlorosilane (> 99% ee) with dimethyl(4-methoxynaphth-1-yl)silyllithium. Under the optimized conditions, the reactions proceeded with almost complete inversion for the cholorosilanes and retention for the silyl anions. Optically active disilanes with two chiral centers, (1R,2R)-1,2-dimethyl-1,2-di(naphth-1-yl)-1,2-diphenyldisilane and (1S,2S)-1,2-di(4-methoxynaphth-1-yl)-1,2-dimethyl-1,2-diphenyldisilane, were obtained in high optical purity by the reactions of corresponding optically active halogenosilanes (Cl or F) with optically active silyllithiums. The silicon-silicon bond and the silicon-naphthyl bond of (R)-1,1,2-trimethyl-1,2-di(naphth-1-yl)-2-phenyldisilane and (1R,2R)-1,2-dimethyl-1,2-di(naphth-1-yl)-1,2-diphenyldisilane were cleaved without selectivity on bromination. The silicon-(4-methoxynaphth-1-yl) bond of (R)-1,2,2-trimethyl-2-(4-methoxynaphth-1-yl)-1-(naphth-1-yl)-1-phenyldisilane was regiospecifically cleaved, followed by the stereoselective cleavage of the remaining chiral silicon-naphthyl bond (94% inversion). Although the silicon-(4-methoxynaphth-1-yl) bonds of (1S,2S)-1,2-di(4-methoxynaphth-1-yl)-1,2-dimethyl-1,2-diphenyldisilane (> 99% ee) were regioselectively cleaved without silicon-silicon bond scission, remarkable racemization could not be avoided during the one-pot reaction.  相似文献   

11.
Achiral and chiral liquid chromatographic methods utilizing mass spectrometric detection were developed to investigate the possibility of inversion of configuration at any or all of the chiral centers of the neurokinin-1 (NK-1) receptor antagonist, aprepitant (5-[[2(R)-[1(R)-(3,5-bistrifluoromethyl phenyl)ethoxy]-3(S)-(4-fluorophenyl)morpholin-4-yl]methyl]-2,4-dihydro-[1,2,4]triazol-3-one), in-vivo, following administration of the compound to man. A structure such as aprepitant, that contains three chiral centers, may exist in eight stereochemical forms or, more specifically, as four diastereoisomeric pairs of enantiomers. The four diastereoisomers were separated from each other using a ProntoSil C18 AQ HPLC column (4.6 x 100 mm, 3 microm particles) with a mobile phase composed of acetonitrile--water (47:53, v/v%). Detection was via a single quadrupole mass spectrometer that was connected to the HPLC system via an APCI interface. Analysis of post-dose plasma samples under these conditions indicated that only aprepitant and or its enantiomer were present following oral administration of the drug. Aprepitant and its enantiomer were separated using a Chiralcel OD-H HPLC column with a mobile phase composed of hexane-isopropanol (80:20, v/v%); tandem mass spectrometric detection using an APCI interface was employed. Post-dose plasma samples analyzed using the Chiracel column were found to contain only aprepitant. The results of these experiments confirm that the products of inversion of configuration at any or all of the three chiral centers of aprepitant are not detectable in human plasma samples obtained following the administration of the drug.  相似文献   

12.
Irradiations of alkyl 2-naphthoates are known to result in four isomeric "cubane-like" photodimers: anti(HH)-2, syn(HH)-2, anti(HT)-2, and syn(HT)-2 where the anti(HH)-2, anti(HT)-2, and syn(HT)-2 consist of pairs of diastereomers. Here, chiral auxiliary and chiral microreactor strategies have been combined to achieve high diastereoselectivity in photodimerizations of an enantiomeric pair of 2-naphthoates with (R)- and (S)-1-methoxycarbonylethyl esters as chiral auxiliaries (1R and 1S). Thus, irradiations of their γ-cyclodextrin (γ-CD) complexes have been conducted. Fluorescence, IR, and NMR spectra of both enantiomers of 1 demonstrate that their γ-CD complexes are mainly 2:2 with the molecules of 1 in head-to-head orientations. Irradiation of the complexes in the solid state mainly resulted in anti(HH)-2. The absolute configuration of each diastereomer of anti(HH)-2 has been established for the first time here. The diastereomeric excesses (de's) of anti(HH)-2 from 1R and 1S were 94% and 86%, respectively. These de's are much higher than those found from irradiations in solution (55% for 1R and 1S), where the opposite diastereomeric form is in excess! Calculations of the energies of various conformations of the head-to-head 2:2 inclusion complexes were performed using the PM3 approach. The predicted major diastereomers based on the calculation are consistent with those found experimentally.  相似文献   

13.
The solvent and temperature dependence of the phototautomerization of 1-methyl-2-(2'-hydroxyphenyl)benzimidazole (4) and the novel compounds 2-(4'-amino-2'-hydroxyphenyl)benzimidazole (1), 2-(4'-N,N-diethylamino-2'-hydroxyphenyl)benzimidazole (2), and 1-methyl-2-(4'-N,N-diethylamino-2'-hydroxyphenyl)benzimidazole (3), together with the ground-state rotamerism and tautomerism of these new compounds, have been studied by UV-vis absorption spectroscopy and steady-state and time-resolved fluorescence spectroscopy. A solvent-modulated rotameric and tautomeric equilibrium is observed in the ground state for 1, 2, and 3. In cyclohexane, these compounds mainly exist as a planar syn normal form, with the hydroxyl group hydrogen-bonded to the benzimidazole N3. In ethanol, the syn form is in equilibrium with its planar anti rotamer (for 1 and 2), with the phenyl ring rotated 180 degrees about the C2-C1' bond and with a nonplanar rotamer for compound 3. In aqueous solution, a tautomeric equilibrium is established between the anti normal form (or the nonplanar rotamer for 3) and the tautomer (with the hydroxyl proton transferred to the benzimidazole N3). The syn normal form of these compounds undergoes in all the solvents an excited-state intramolecular proton-transfer process from the hydroxyl group to the benzimidazole N3 to yield the excited tautomer. The tautomer fluorescence quantum yield of 2, 3, and 4 shows a temperature-, polarity-, and viscosity-dependent radiationless deactivation, connected with a large-amplitude conformational motion. We conclude that this excited-state conformational change experienced by the tautomer is associated with an intramolecular charge transfer from the deprotonated dialkylaminophenol or phenol (donor) to the protonated benzimidazole (acceptor), affording a nonfluorescent charge-transfer tautomer. Therefore, these compounds undergo an excited-state intramolecular coupled proton- and charge-transfer process.  相似文献   

14.
Rondot C  Zhu J 《Organic letters》2005,7(8):1641-1644
[reaction: see text] A diastereoselective three-component synthesis of chiral o-1,2-diaminoalkyl phenols from an electron-rich phenol, an amine, and a chiral alpha-N,N-dibenzylamino aldehyde is developed. The diastereoselectivity of this phenolic Mannich reaction is temperature-dependent,and either anti or syn diastereomer can be prepared by controlling the reaction conditions. Low reaction temperature (-20 degrees C) favors the formation of anti adduct 1, whereas higher temperature (60 degrees C) under otherwise identical conditions produces mainly the syn isomer.  相似文献   

15.
The cycloadditions of nitrones with 2,3-dihydro-1-phenyl-1H-phosphole 1-oxide give a single cycloadduct deriving from a highly diastereoselective approach of the nitrone anti to the phenyl ring of phospholene oxide. When the chiral gliceraldehyde derived nitrone is used, only two diastereoisomers are produced in 1.7:1 ratio. The structural assignment based on NMR data and X-ray analysis of the major isomer established a trans C3–C4 stereochemistry (derived from endo TS with respect to nitrone) and a C3–C4′ relative stereochemistry of threo type in the major isomer and erythro in the minor one. Therefore, each enantiomer of phospholene oxide 6 gives exclusively one cycloadduct with five contiguous stereogenic centres in an established and predictable absolute configuration. The difference of reactivity of the two enantiomers allowed a partial kinetic resolution of the racemic phospholene oxide, affording (+)-(S) enantiomer with 90% enantiomeric excess.  相似文献   

16.
The benzylation of N-sulfinyl ketimines with 2-(p-tolylsulfinyl)ethylbenzene and LDA afford t-alkylamines in good yields. The configuration at each one of the new chiral centers simultaneously created in this reaction is controlled by the configuration of the sulfinyl groups at the nucleophile and electrophile, respectively. Thus, the reactions of the (S)-sulfoxide 6 with the N-(S)-sulfinylketimines 3 only yield the anti diastereoisomers 18, whereas the syn diastereoisomers 19 are exclusively formed in reactions of (S)-6 with N-(R)-sulfinylketimines 3. After a two-step desulfinylation process ((i) TFA, (ii) Ra-Ni), this reaction provides a procedure for synthesizing any epimer of alpha,alpha-dibranched beta-alkylarylamines in optically pure form by choosing the configuration of the starting materials. A similar behavior is observed for carbanions derived from the O-protected 2-(p-tolylsulfinyl) benzyl alcohol 7 thus allowing the synthesis of the optically pure anti- and syn-1,2-amino alcohols containing a chiral quaternary carbon adjacent to the nitrogen.  相似文献   

17.
In order to study their photographic properties, starting from the corresponding aromatic diamines the first representatives of a number of dipyrazolidonylarylenes have been synthesized: di[4-(pyrazolid-3-on-1-yl) phenyl] oxide and 1,2-di[4-(pyrazolid-3-on-1-yl)phenyl]ethane.For part IV, see [14].  相似文献   

18.
Asymmetric hydrogenation of acetophenone in the presence of Ru(II) catalysts coordinated by TolBINAP and a series of chiral 1,2-diamines was studied. The sense and degree of enantioselectivity were highly dependent on the N-substituents of the diamine ligands. The N-substituent effect was discussed in detail. Among these catalysts, the (S)-TolBINAP/(R)-DMAPEN-Ru(II) complex showed the highest enantioselectivity. The mode of enantioface selection was interpreted by using transition state models based on the X-ray structure of the catalyst precursor. The chiral catalyst effected the hydrogenation of alkyl aryl ketones and arylglyoxal dialkyl acetals to afford the chiral alcohol in >99% ee in the best cases. Hydrogenation of racemic benzoin methyl ether with the chiral catalyst through dynamic kinetic resolution gave the anti-alcohol (syn:anti = 3:97) in 98% ee, while the reaction of alpha-amidopropiophenones resulted in the syn-alcohols (syn:anti = 96:4 to >99:1) in >98% ee.  相似文献   

19.
Certain 1,2,4-trisubstituted imidazoles underwent electrophilic attack of azodicarbonyl compounds on the 5-position to form 5-(1,2-dialkoxycarbonyl)hydrazino- and 5-(4-phenyl-3,5-dioxo-1,2,4-triazolidin-1-yl)imidazole derivatives in moderate to high yields. The reaction was highly susceptible to the nature and the substitution pattern of the substituents on the imidazole ring. Thus 1,4-di- or 1,2,5-trisubstitued imidazoles, and 2-methylsulfinylimidazoles gave no reaction. Reductive cleavage of the tetrasubstituted imidazoles with zinc dust-acid gave the 1- or 1,2-cleaved product depending upon the reaction temperature, but the hydrazino moiety remained intact.  相似文献   

20.
A series of heteroleptic copper(I) complexes incorporating amido-triazole and diphosphine ligands, [Cu(I)(N-phenyl-2-(1-phenyl-1H-1,2,3-triazol-4-yl)aniline)(dppb)] (1), [Cu(I)(N-(4-methylphenyl)-2-(1-phenyl-1H-1,2,3-triazol-4-yl)aniline)(dppb)] (2), [Cu(I)(N-(4-methoxyphenyl)-2-(1-phenyl-1H-1,2,3-triazol-4-yl)aniline)(dppb)] (3), [Cu(I)(N-(4-chlorophenyl)-2-(1-phenyl-1H-1,2,3-triazol-4-yl)aniline)(dppb)] (4), [Cu(I)(2,6-dimethyl-N-[2-(1-phenyl-1H-1,2,3-triazol-4-yl)phenyl]aniline)(dppb)] (5), [Cu(I)(2,6-dimethyl-N-[2-(1-benzyl-1H-1,2,3-triazol-4-yl)phenyl]aniline)(dppb)] (6), (dppb = 1,2-bis(diphenylphosphino)benzene), have been prepared. The complexes adopt a distorted tetrahedral geometry in the solid state with the amido-triazole ligand forming a six-member ring with the Cu(I) ion. The complexes exhibit long-lived photoluminescence with colors ranging from yellow to red-orange in the solid state, in frozen glass at 77 K, and in fluid solution with modest quantum yields of up to 0.022. Electrochemically, complexes 1-4 show irreversible oxidation waves while 5 and 6 are characterized by quasi-reversible oxidations as determined by cyclic voltammetry. For 1-4, the emission energy and oxidation potential are found to vary linearly with the Hammett parameter σ(p) of the substituent in the para position of the amido ligand, while in 5 and 6, large differences in emission are observed because of the nature of N3 substitution in the triazole ring. Density functional theory calculations have been performed on the singlet ground states (S(o)) of all complexes at the BP86/6-31G(d) level to assist in assignment of the excited states. On the basis of both experimental and computational results, we have assigned the excited states as intraligand + metal-to-ligand charge transfer (3)(ILCT+MLCT) or ligand-to-ligand charge transfer mixed with MLCT (3)(MLCT +LLCT) in these complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号