首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
研究了梁中的非线性弯曲波的传播特性,同时考虑了梁的大挠度引起的几何非线性效应和 梁的转动惯性导致的弥散效应,利用Hamilton变分法建立了梁中非线性弯曲波的波动方程. 对该方程进行了定性分析,在不同的条件下,该方程在相平面上存在同宿轨道或异宿轨道, 分别对应于方程的孤波解或冲击波解. 利用Jacobi椭圆函数展开法,对该非线性方程进行 求解,得到了非线性波动方程的准确周期解及相对应的孤波解和冲击波解,讨论了这些解存 在的必要条件,这与定性分析的结果完全相同. 利用约化摄动法从非线性弯曲波动方程中导 出了非线性Schr\"{o}dinger方程,从理论上证明了考虑梁的大挠度和转动惯性时梁中存在 包络孤立波.  相似文献   

2.
A fast adaptive symplectic algorithm named Multiresolution Symplectic Scheme (MSS) was first presented to solve the problem of the wave propagation (WP) in complex media, using the symplectic scheme and Daubechies‘ compactly supported orthogonal wavelet transform to respectively discretise the time and space dimension of wave equation. The problem was solved in multiresolution symplectic geometry space under the conservative Hamiltonian system rather than the traditional Lagrange system. Due to the fascinating properties of the wavelets and symplectic scheme, MSS is a promising method because of little computational burden, robustness and reality of long-time simulation.  相似文献   

3.
This work presents a multiple time scales perturbation analysis for analyzing weakly nonlinear wave interactions in multi-degree of freedom periodic structures. The perturbation analysis is broadly applicable to (discretized) periodic systems in any dimensional space and with a wide range of constitutive nonlinearities. Specific emphasis is placed on cubic nonlinearity, as dispersion shifts typically arise from the cubic components in nonlinear restoring forces. The procedure is first presented in general. Then, application to the diatomic chain and monoatomic two-dimensional lattice demonstrates, individually, the treatment of multiple degree of freedom systems and higher dimensional spaces. The dispersion relations are modified by weakly nonlinear wave interactions and lead to additional opportunities to control wave propagation direction, band gap size, and group velocity. Numerical simulations validate the expected dispersion shifts. An amplitude-tunable focus device demonstrates the viability of utilizing dynamically-introduced dispersion to produce beam steering that may, ultimately, lead to a phononic superprism effect as well as multiplexing/demultiplexing behavior.  相似文献   

4.
被动隔振体非线性振动的能量迭代解法   总被引:5,自引:0,他引:5  
研究了由基础振动激励、弹性材料隔离的被动隔振体的强非线性动力响应。用变形的三次多项式函数表征隔振材料的非线性刚度特性,建立了被动隔振体的非线性动力学方程,得到有阻尼受迫振动Duffing方程。将求解强非线性自治系统的能量迭代方法加以改进,推广应用到强非线性非自治系统,求出周期响应的近似解析解表达式,以及幅频关系、相频关系和隔振系数的近似表达式。算例中应用本方法与Runge-Kutta方法进行了对照,结果表明求解精度较高。本文利用计算机进行了辅助推导。  相似文献   

5.
基于双波初值问题,讨论非线性对多波传播的影响。通过选取合适的多重尺度,对Klein-Gordon波动方程进行变形,得到方程的解的多尺度展式首项近似和三波传播时速度相互影响的定量关系,揭示了多波传播的非线性特性;最后,应用Mathematica对波动方程进行数值仿真。研究结果表明,另外多个波的存在会使波的传播速度(相速)超过独自传播时的速度(相速)。  相似文献   

6.
保守体系的微分方程可用Hamilton体系的方法描述,其特点是保辛。两个辛矩阵之和不能保辛,两个辛矩阵的乘积仍是辛矩阵。最常用的小参数摄动法用的是加法,因此对辛矩阵不能保辛。从保辛的角度,要用正则变换。本文针对非线性微分方程,运用自变量坐标变换,对原系统进行变换。由此推导出变换后系统的变分原理。引入Hamilton对偶变量,通过数学变换,得到变系数非线性方程。针对该方程,本文提出了保辛摄动算法。通过数值算例,对不同步长下,保辛摄动法、多尺度摄动法、龙格库塔法和精确解的结果做了比较。数值例题表明,对于非线性方程,本文提出的保辛摄动算法有良好的精度。在步长增大的情况下,保辛摄动保持了良好的稳定性。  相似文献   

7.
A spherical sound wave is emitted by a sphere which executes a small sinusoidal pulsation of a single period at high frequency in an inviscid fluid. Nonlinear propagation of the waves is formulated as an initial boundary value problem and is analysed in detail. The governing equation is linear near the sphere, while it is a nonlinear hyperbolic equation in a far field. The nonlinearity has a significant effect there, leading to the formation of two shocks. The exact solution to match the near field solution can easily be obtained for the far field equation. The nonlinear distortion of waveform and the shock formation distance are evaluated from the representation of the solution with strained coordinates. The evolution and nonlinear attenuation of the two shock discontinuities are also examined by making use of the equal-areas rule. In its asymptotic form the entire profile is an N wave with a long tail.  相似文献   

8.
Steady-progressive-wave solutions are sought to the nonlinear wave equation derived previously [J. Fluids Struct. 16 (2002) 597] for flexural motions of an elastic beam traveling in an air-filled tube along its center axis at a subsonic speed. Fluid-structure interactions are taken into account through aerodynamic loading on the lateral surface of the beam subjected to small but finite deflection but end effects and viscous effects are neglected. Linear dispersion characteristics are first examined by exploiting the small ratio of the induced mass to the mass of the beam per unit length. Centered around the traveling speed of the beam, there exists such a narrow range of propagation velocity that the linear steady propagation is prohibited. In this range, it is revealed that some interesting nonlinear solutions exist. The periodic wavetrain is found to exist as the exact solution. Asymptotic analysis is then made by applying the method of multiple scales and the stationary nonlinear Schrödinger equation is derived for a complex amplitude. A monochromatic solution to this equation corresponds to the exact periodic solution. Imposing undisturbed boundary conditions at infinity, it is revealed that the localized solution exists as a result of balance between the linear instability and the nonlinearity. This solution is checked by solving the nonlinear equation numerically. It is further revealed that the amplitude-modulated wavetrain exists not only in the range of the velocity mentioned above but also outside of it.  相似文献   

9.
A nonlinear transmission line (NLTL) is comprised of a transmission line periodically loaded with varactors, where the capacitance nonlinearity arises from the variable depletion layer width, which depends both on the DC and AC voltages of the propagating wave. An equivalent circuit model of NLTL is discussed analytically, in this article, and different type of solutions are celebrated. The improved extended tanh-function method has been applied successfully to extract the solutions. The obtained solutions are solitary wave solutions, singular periodic solutions, singular soliton solutions, Jacobi elliptic doubly periodic type solutions and Weierstrass elliptic doubly periodic type solutions. It is a very convenient tool to study the propagation of electrical solitons which propagate in the form of voltage waves in nonlinear dispersive media.  相似文献   

10.
Time domain simulation of the interaction between offshore structures and irregular waves in shallow water becomes a focus due to significant increase of liquefied natural gas (LNG) terminals. To obtain the time series of irregular waves in shallow water, a numerical wave tank is developed by using the meshless method for simulation of 2D nonlinear irregular waves propagating from deep water to shallow water. Using the fundamental solution of Laplace equation as the radial basis function (RBF) and locating the source points outside the computational domain, the problem of water wave propagation is solved by collocation of boundary points. In order to improve the computation stability, both the incident wave elevation and velocity potential are applied to the wave generation. A sponge damping layer combined with the Sommerfeld radiation condition is used on the radiation boundary. The present model is applied to simulate the propagation of regular and irregular waves. The numerical results are validated by analytical solutions and experimental data and good agreements are observed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Second-order ordinary differential equations (ODEs) with strongly nonlinear damping (cubic nonlinearities) govern surface wave motions that entail nonlinear surface seismic motions. They apply to dynamic crack propagation and nonlinear oscillation problems in physics and nonlinear mechanics. It is shown that the nonlinear surface seismic wave equation (Rayleigh equation) admits several functional transformations and it is possible to reduce it to an equivalent first-order Abel ODE of the second kind in normal form. Based on a recently developed methodology concerning the construction of exact analytic solutions for the type of Abel equations under consideration, exact solutions are obtained for the nonlinear seismic wave (NLSW) equation for initial conditions of the physical problem. The method employed is general and can be applied to a large class of relevant ODEs in mathematical physics and nonlinear mechanics.  相似文献   

12.
The effect of nonlinear elastic pre-stress on antiplane elastic wave propagation in a two-dimensional periodic structure is investigated. The medium consists of cylindrical annuli embedded on a periodic square lattice in a uniform host material. An identical inhomogeneous deformation is imposed in each annulus and the theory of small-on-large is used to find the incremental wave equation governing subsequent small-amplitude antiplane waves. The plane-wave-expansion method is employed in order to determine the permissable eigenfrequencies. It is found that pre-stress significantly affects the band gap structure for Mooney–Rivlin and Fung type materials, allowing stop bands to be switched on and off. However, it is also shown that for a specific class of materials, their phononic properties remain invariant under nonlinear deformation, permitting some rather interesting behaviour and leading to the possibility of phononic cloaks.  相似文献   

13.
夹层圆柱壳中弹性波传播的辛特性分析   总被引:1,自引:0,他引:1  
论文研究了正交各向异性夹层圆柱壳中轴对称自由简谐波的传播问题.通过对变量合理的组织变换,将结构本构方程化为状态空间形式,采用分段平均假设得到哈密顿矩阵,进而利用哈密顿系统下的辛数学方法,扩展的Wittrick-Williams算法及精细积分方法,得到各种夹层结构波传播问题的频散关系,并将该方法与多项式方法进行对比,验证了该方法在多孔结构波传播问题中的优越性.  相似文献   

14.
The work is devoted to the problem of plane monochromatic longitudinal wave propagation through a homogeneous elastic medium with a random set of spherical inclusions. The effective field method and quasicrystalline approximation are used for the calculation of the phase velocity and attenuation factor of the mean (coherent) wave field in the composite. The hypotheses of the method reduce the diffraction problem for many inclusions to a diffraction problem for one inclusion and, finally, allow for the derivation of the dispersion equation for the wave vector of the mean wave field in the composite. This dispersion equation serves for all frequencies of the incident field, properties and volume concentrations of inclusions. The long and short wave asymptotics of the solution of the dispersion equation are found in closed analytical forms. Numerical solutions of this equation are constructed in a wide region of frequencies of the incident field that covers long, middle, and short wave regions of propagating waves. The phase velocities and attenuation factors of the mean wave field are calculated for various elastic properties, density, and volume concentrations of the inclusions. Comparisons of the predictions of the method with some experimental data are presented; possible errors of the method are indicated and discussed.  相似文献   

15.
赵希宁  杨晓东  张伟 《力学学报》2021,53(4):1124-1137
非线性科学己成为近代科学发展的一个重要标志,特别是非线性动力学和非线性波的研究对于解决自然科学各领域中遇到的复杂现象和问题有着极其重要的意义.本文研究了含电学边界条件的压电层合梁的非线性弯曲波传播特性.首先,考虑几何非线性效应和压电耦合效应,利用哈密顿原理建立了一维无限长矩形压电层合梁弯曲波的非线性方程.其次,采用Ja...  相似文献   

16.
基于波前动量守恒理论和位移不连续方法所提出的时域分析新方法,引入岩石非线性法向本构关系,对弹性纵波在岩石非线性节理中的传播特性进行了理论分析。采用节理变形的双曲线模型(BB模型),获得纵波P波斜入射非线性节理的传播波动方程,并通过参数研究分析了在岩石节理中节理非线性系数、节理初始刚度、应力波入射角和入射波幅值等因素对纵波传播规律的影响。结果表明:所推导的应力波传播方程在考虑多种非线性问题时,通过迭代计算即可方便求出透射波和反射波的数值解,避免了复杂的数学运算;当波斜入射节理面时,产生了波型转换,节理变形的非线性对透射波和反射波有较大影响,透射系数和反射系数并非随着非线性参数的变化而单调变化。时域内所推导的波传播方程更有益于波斜入射时非线性参数的广泛研究,为开展该方面的理论研究工作提供了借鉴。  相似文献   

17.
Zhao  Yuhao  Du  Jingtao  Chen  Yilin  Liu  Yang 《Nonlinear dynamics》2023,111(10):8947-8971

Some complex engineering structures can be modeled as multiple beams connected through coupling elements. When the coupling element is elastic, it can be simplified as a mass-spring system. The existing studies mainly concentrated on the double-beam coupled through elastic connectors, where the connector is simplified as the equivalent linear stiffness element or linear mass-spring system. Furthermore, many researches ignore rotational boundary restraints in analyzing dynamic behavior of the double-beam connected through elastic connectors, limiting their engineering generality. Considering the above limitations, this study attempts to employ the cubic nonlinear stiffness in the coupling mass-spring system and study the potential application of the mass-spring system that is nonlinear on the vibration control of the double-beam system. Using the variational method and the generalized Hamiltonian method build the corresponding system’s governing functions. Applying the Galerkin truncation method (GTM) obtains the dynamic behavior of the double-beam connected through a mass-spring system that is nonlinear. According to this study, the change of the mass-spring system that is nonlinear significantly influences the dynamic behavior of the double-beam system, where the complex dynamic behavior occurs under certain parameters of the mass-spring system that is nonlinear. Suitable parameters of the mass-spring system that is nonlinear are good at the vibration suppression at the boundary of the vibration system. Furthermore, the mass-spring system that is nonlinear can change the characteristics of the double-beam system’s kinetic energy transfer. For the vibration model established in this work, a quasi-periodic vibration state can be regarded as a sign of the occurrence of the targeted energy transfer of the double-beam connected through a mass-spring system that is nonlinear.

  相似文献   

18.
M. P. Levin 《Fluid Dynamics》1996,31(6):865-867
The problem of the propagation of pressure waves through compressible porous media saturated with a slightly compressible fluid is considered. By using Darcy's law the problem is reduced to a mixed initial-boundary value problem for an equation of the heat conduction type with a nonlinear term. The method of quasi-characteristics is used to solve this equation numerically. Solutions of the wave propagation problem for media with different permeability coefficients are presented. A solution of the inverse problem of determining the permeability coefficient using wave-pulse test data is constructed on the basis of a set of solutions of the direct problem.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 81–84, November–December, 1996.  相似文献   

19.
This paper considers the problem of one dimensional wave propagation in nonlinear, hysteretic media. The constitutive law in the media is prescribed by an integral relationship based on the Duhem model of hysteresis. It is found that the well known nonlinear elastic stress–strain relationship is a special case of this integral relationship. It is also shown that the stress–strain relationship from the McCall and Guyer model of hyesteretic materials can also be derived from this integral stress–strain relationship. The first part of this paper focuses on a material with a quadratic stress–strain relationship, where the initial value problem is formulated into a system of conservation laws. Analytical solutions to the Riemann problem are obtained by solving the corresponding eigenvalue problem and serve as reference for the verification and illustration of the accuracy obtained using the applied numerical scheme proposed by Kurganov and Tadmor. The second part of this research is devoted to wave propagation in hysteretic media. Several types of initial excitations are presented in order to determine special characteristics of the wave propagation due to material nonlinearity and hysteresis. The results of this paper demonstrate the accuracy and the robustness of this numerical scheme to analyze wave propagation in nonlinear materials.  相似文献   

20.
A method is developed for the identification of the dynamic properties of nonlinear viscoelastic materials using transient response information arising from impact tests. The solutions of the identification problem and that of the associated nonlinear wave propagation problem are shown to be coupled. They are accomplished via application of the method of lines, the Runge-Kutta-Pouzet integration scheme with automatic step size control and Powell's method of unconstrained optimization. Numerical experiments are performed to demonstrate the feasibility, accuracy and stability of the solution procedure established, and wave propagation experiments are conducted to investigate the applicability of the method to a real physical system. The results are of particular interest in the modeling of nonlinear viscoelastic materials and the identification of systems governed by nonlinear hyperbolic partial-integro-differential equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号