首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 446 毫秒
1.
Real-time kinetic measurements of hexavalent chromium binding to fused silica surfaces functionalized with carboxylic acid and methyl ester terminal groups are performed in situ using resonantly enhanced surface second harmonic generation (SHG) at pH 7 and 300 K. These functional groups were chosen because of their high abundance in humic acids and related biopolymers. Kinetic measurements are conducted in the submonolayer regime using chromate solution concentrations ranging from 1 x 10(-6) to 2 x 10(-5) M. The adsorption rates were analyzed using the standard Langmuir model and the Frumkin-Fowler-Guggenheim model. The desorption kinetics are consistent with a first-order process. These results indicate that hexavalent chromium mobility in carboxylic acid- and ester-rich soil environments increases with decreasing chromate concentrations. Based on the measured half-lives of the adsorbed Cr(VI) species, remobilization of bound hexavalent chromium due to natural or anthropogenic events that lower the chromate concentration in the aqueous phase can occur within minutes.  相似文献   

2.
The reaction pathway of vinyl acetate synthesis is scrutinized by reacting gas-phase ethylene (at an effective pressure of 1 x 10-4 Torr) with eta2-acetate species (with a coverage of 0.31 +/- 0.02 monolayer) on a Pd(111)-O(2x2) model catalyst surface in ultrahigh vacuum. It is found that the 1414 cm-1 infrared feature due to the symmetric OCO stretching mode of the acetate species decreases in intensity due to reaction with gas-phase ethylene, while temperature-programmed desorption experiments demonstrate that vinyl acetate is formed. The formation of ethylidyne species is detected when almost all of the acetate species have been removed. The experimental removal kinetics are reproduced by a model in which adsorbed acetates react with an ethylene-derived (possibly ethylene or vinyl) species, where ethylene adsorption is blocked by the acetate present on the surface.  相似文献   

3.
A model for protein adsorption kinetics is presented. This model includes diffusion limited adsorption, adsorption and desorption rate constants which are dependent on the surface concentration and an interaction term for the mutual influence of the adsorbed protein molecules. It is shown that, in first approximation, the values of the adsorption and desorption rate constants are exponential functions of the surface concentration. Assuming an adequate interaction term it is possible to show with this model for the adsorption kinetics of a mixture of proteins that the ratio of the adsorbed proteins is strongly dependent on the overall surface concentration even if the ratio of the bulk concentrations of these proteins is kept constant. Differences in interaction terms for the different proteins offer a possible explanation for the peculiar behaviour of plasma protein adsorption on a surface at different dilutions of the plasma, the so called “Vroman effect”.  相似文献   

4.
Within the framework of a nonideal two-dimensional solution model, equations are derived for the state of a surface layer, adsorption isotherms, and the distribution function of adsorbed protein molecules with respect to their states characterized by different molar surface areas. The derived equations satisfactorily describe the known experimental dependences obtained for equilibrium adsorption layers of some proteins (serum albumin, β-casein, and β-lactoglobulin): the dependences of the surface pressure on concentration and adsorption, the surface layer thickness on adsorption, and the limiting high-frequency elastic modulus of an adsorption layer on the surface pressure. All dependences for a given protein are described by the same set of parameters of the theoretical model. It is shown that the kinetics of protein adsorption studied by dynamic tensiometry, ellipsometry, and the radiotracer technique is consistent with the diffusion model comprising the Ward-Tordai equation and the set of equations describing the equilibrium. The kinetics of protein desorption from the adsorption layer at a liquid-fluid interface is analyzed. The kinetics of β-lactoglobulin desorption is shown to be described by the barrier mechanism.__________Translated from Kolloidnyi Zhurnal, Vol. 67, No. 4, 2005, pp. 437–449.Original Russian Text Copyright © 2005 by Fainerman, Miller.  相似文献   

5.
We describe a novel technology based on changes in the resonant frequency of an acoustically actuated surface and use it to measure temporal changes in the surface energy gamma (N m(-1)) of an elastomeric polymer membrane due to the adsorption of macromolecules from aqueous solution. The resonant elastomeric surface-tension (REST) sensor permits simultaneous determination of mass loading kinetics and gamma(t) for a given adsorption process, thereby providing a multivariable data set from which to build and test models of the kinetics of adsorption at solid-liquid interfaces. The technique is used to measure gamma(t) during the adsorption of either sodium dodecyl sulfate (SDS) or hen egg-white lysozyme (HEWL) onto an acrylic polymer membrane. The adsorption of SDS is reversible and is characterized by a decrease in gamma over a time period that coincides with that required for the mass loading of the membrane. For the adsorption of HEWL labeled with Alexa Fluor 532 dye, gamma continues to change long after the surface concentration of labeled HEWL, measured by using the elastomeric polymer membrane as an optical waveguide, reaches steady state. Gradual but significant changes in gamma(t) are observed as long as the concentration of protein in the bulk solution, c(b), remains nonzero. HEWL remains adsorbed to the membrane when c(b) = 0, but changes in gamma(t) are not observed under this condition, indicating that the interaction of bound protein molecules with those free in solution contribute to the prolonged change in the surface energy. This observation has been used to define a new model for the kinetics of globular protein adsorption to a solid-liquid interface that includes a mechanism by which the molecules in the bulk can facilitate the desorption of a sorbate molecule or change the energetic states of adsorbed molecules and, thus, the overall surface energy. The model is shown to capture the unique features of protein adsorption kinetics, including the relatively fast mass loading, the much more gradual change in surface energy that does not cease until the protein is removed from the bulk, the rapid desorption of an incubation-time-dependent fraction of bound protein when the protein is removed from the bulk, and the fixing of the residual surface concentration and surface energy at constant values once the removal of reversibly bound protein and free protein is complete.  相似文献   

6.
A phenomenological (mean-field) mathematical model of unimolecular reactions proceeding onto inhomogeneous planar surfaces is presented and investigated numerically in two-dimensional in space case taking into account the adsorption and desorption of reactant particles, long-range surface diffusion of the adsorbed particles, and an instantaneous product desorption from an adsorbent. The model also involves the bulk diffusion of the reactant from the bounded vessel towards the adsorbent and the product bulk one from the adsorbent into the same vessel. Simulations were performed using the finite difference technique. The influence of the long-range surface diffusion of adsorbed particles on the kinetics for processes catalyzed by inhomogeneous surfaces with a different arrangement of reactive and non-reactive adsorption sites is studied.  相似文献   

7.
Using atomic beam/surface scattering measurements to investigate the desorption kinetics of low-coverage Pb from Mo(100), we uncover a large entropy difference between Pb atoms at terrace and step sites, which should be general for adsorbates on surfaces at high temperatures. A line shape analysis of the transient desorption signal reveals the presence of two species with different lifetimes on the surface. An Arrhenius analysis of these lifetimes from 1150 to 1320 K provides the prefactors and desorption activation energies (332 and 411 kJ/mol) of these two states. A comparison of these energies to those measured directly via adsorption calorimetry strongly suggests that one state is a terrace-bound species. The other, more strongly bound species is attributed to steps. The more strongly bound step species has the higher rate constant for desorption because of its much larger desorption prefactor (9 x 10 (19) vs 5 x 10 (15) s (-1)). Within transition state theory, the ratio of these prefactors corresponds to 82 J/(mol K) higher entropy for the terrace species than for the step species. This large entropy difference is quantitatively reproduced by a simple model which assumes the terrace species is a 2D ideal gas parallel to the surface and the step species is a 1D ideal gas along the step edges. Such a difference will generally exist for adsorbed species when k B T exceeds the barrier height for adsorbate diffusion across terraces. A consequence of this large entropy difference is that the defect sites are much less populated relative to terrace sites than would be expected based on enthalpy alone. The measured prefactor for Pb desorption was used to analyze earlier surface lifetime measurements for Pb on MgO(100) to extract adsorption energies for that system, as well.  相似文献   

8.
We examined the adsorption kinetics of alpha-chymotrypsin (pH 8.6, 10(-2) to 0.5 M Tris buffer) on muscovite mica in conditions of laminar flow through a slit. The range of buffer concentrations is between two limits: (i) no adsorption in 1 M Tris and (ii) no desorption in 10(-3) M Tris. Studying the dependence of adsorption kinetics on the wall shear rate leads to the determination of the interfacial adsorption kinetic constant ka and the diffusion coefficient. The obtained value for the diffusion coefficient is close to the one expected from the molecular size of alpha-chymotrypsin. The interfacial adsorption kinetic constant of alpha-chymotrypsin decreases when ionic strength increases, while the initial desorption constant (over a part of all the adsorbed population) shows the contrary. Although alpha-chymotrypsin is almost at its isoelectric point, the effect of ionic strength on the adsorption kinetics suggests the importance of electrostatic interactions between the protein and mica. We observed an increase in the adsorption rate, at a surface coverage near 0.14 microg cm(-2), for adsorption in 10(-2) M Tris and the low wall shear rates (<300 s(-1)). This change in the adsorption rate suggests a structural transition, that we assume again to be due to electrostatic interactions, but between proteins. The large dipole moment of the protein may induce this transition, illustrated here by the ferroelectric/antiferroelectric pattern. The variation of the zeta potential with interfacial concentration seems to be in agreement with such a model.  相似文献   

9.
10.
High-performance frontal affinity chromatography was employed to study the adsorption-desorption kinetics characterizing the retention of beta-lactoglobulin (beta-LG) onto polyclonal anti-beta-lactoglobulin (anti-beta-LG) chromatographic supports. The adsorption and desorption processes were studied by analyzing two different elution fronts separated by a relatively long rinsing step. The method consists in performing two successive frontal injections of the protein. In between, the column was rinsed with a given volume of mobile phase (buffer alone). During this rinsing stage, a partial desorption may occur and a novel amount of protein could be adsorbed in the second frontal injection step. The whole process (first adsorption, possible desorption, and second adsorption) was simulated by a numerical procedure, in which the column was divided into a large number of slices. A model based on bi-Langmuir type kinetics was used to describe the adsorption of the protein on the support. The model assumes a non-uniform adsorbent with two types of binding sites. At equilibrium the adsorption isotherm is of the bi-Langmuir type. A global adsorption effect was considered which includes the effective binding process and the mass transfer resistances due to the transport to the binding site. Therefore, the column capacity and the kinetic parameters of the model (apparent adsorption and desorption rate constants) were determined from the best fit of the first and second adsorption fronts to the experimental ones. The other parameters of the model are the saturation capacities for the adsorption on each type of sites. The equilibrium affinity constants were estimated in a single experiment from the ratio of the apparent adsorption and desorption rate constants. The high values found (around 10(8) M(-1)) reveal a strong interaction of beta-LG with the immunoadsorbent. Kinetic measurements were carried out at different flow rates. Both the apparent adsorption and desorption kinetics were faster at larger flow rates, indicating an important contribution of the mass transfer resistance in the stagnant fluid at the particle boundary. However, as expected, close values were found for the resulting equilibrium constants calculated from the ratio of the apparent adsorption and desorption rate constant determined at various flow rates.  相似文献   

11.
X. Hu  D.D. Do 《Adsorption》1996,2(3):217-225
The role of concentration-dependent surface diffusion in the adsorption kinetics of a multicomponent system is investigated in this paper. Ethane, propane and n-butane are selected as the model adsorbates and Ajax activated carbon as the model adsorbent. Adsorption equilibrium isotherm and dynamic parameters extracted from single-component systems are used to predict the ternary adsorption equilibria and kinetics. The effect of concentration-dependent surface diffusion on the adsorption kinetics predictions is studied by comparing the results of two mathematical models with the experimental data. Three diffusion mechanisms, macropore, surface and micropore diffusions are incorporated in both models. The distinction between these two models is the use of the chemical potential gradient as the driving force for the diffusion of the adsorbed species in one model and the concentration gradient in the other. It was found that the model using the chemical potential gradient provides a better prediction of the ternary adsorption kinetics data, suggesting the importance of the concentration dependency of the surface diffusion, which is implicitly reflected in the chemical potential gradient. The kinetic model predictions are also affected by the way how single-component adsorption equilibrium isotherm data are fitted.  相似文献   

12.
A simple model of gas flow and surface exchange with a single site Langmuir mechanism has been developed to describe effects of adsorption and desorption on trace gas concentrations at the outflow from a coated wall flow tube reactor. The model was tested by simulating experimental results for the uptake of HNO3 and HCl on ice films at temperatures and gas concentrations corresponding to the ice stability region in the upper troposphere. The experimental time-dependent uptake profiles were best fitted with an additional process involving diffusion of the adsorbed molecules into the ice film. The model allowed true surface coverages to be distinguished from total uptake including transfer to the bulk, leading to more accurate estimates of the Langmuir constant, Keq, for surface adsorption. A revised expression was obtained for the temperature dependence of the Keq=-(4.43 +/- 0.77)x 10(5)T+(10.72 +/- 1.75)x 10(7) hPa-1. Reasonable fits to the desorption profiles observed following cessation of exposure of the film to HNO3 or HCl were obtained at high surface coverage but at low coverage desorption was too slow. The analysis suggested that the ice surface was characterised by sites of different binding energy, some weakly bound sites from which the acid molecules desorbed rapidly, and some strong-binding sites which led to essentially irreversible uptake. Experiments involving competitive co-adsorption of HNO3 and HCl, conducted at relatively high equilibrium surface coverage, were well simulated by the model, as were those where the same surface was repeatedly exposed to gas phase acids.  相似文献   

13.
Recent theories suggest that the local adsorption of biologically active peptide growth factors onto the surface of an implant may contribute to the unique osteogenic nature of silica-containing bioactive ceramics. A sol-gel derived glass is used as a model of the in-vivo reaction product of 45S5 bioactive glass at relatively short times (<48 hrs.) to investigate protein adsorption/desorption behavior. The adsorption kinetics of three heme-class proteins (cytochrome c, myoglobin, and hemoglobin) are measured spectroscopically. The rate of adsorption is shown to increase with average pore size, which is determined by the silica content of the gel. Adsorption rate decreases as protein size is increased and as solution pH is decreased. Biological function of an adsorbed peroxidase enzyme on pre-reacted Bioglass® is shown to be retained. Desorption during physiologic conditions is shown to be linear with time and pH dependant, while independent of gel bioactivity.  相似文献   

14.
The adsorption isotherm of bovine submaxillary gland mucin (BSM) onto a hydrophobic polystyrene surface was determined by using the solution depletion method, in which mucin concentrations were analyzed by amino acid analysis. Adsorption and desorption kinetics of BSM onto hydrophobic polystyrene surfaces were also studied by the solution depletion method, in which mucin solution concentrations were determined by measuring UV absorbance at a wavelength of 280 nm and by a BCA colorimetric assay with final calibration by amino acid analysis. From the adsorption isotherm, we found that the saturated surface concentration (Gamma(max)) was 2.3 mg/m(2), and the adsorption constant (K) was calculated as 0.099 (ml/mg). By using a Langmuir adsorption model and nonlinear fitting, kinetics parameters, k(on) and k(off), were found to be 8.13x10(-3) cm(3) mg(-1) s(-1) and 5.67x10(-4) s(-1), respectively. The coating was found to be very stable with very limited desorption (less than 2%) from a long-term observation (28 h). The mucin coating layer thickness was investigated by several analytical techniques: flow field-flow-fractionation, photon correlation spectroscopy, scanning electron microscopy, and atomic force microscopy. The thickness was measured as 4-5 nm, from which a monolayer coating was concluded. Finally, the weight average molecular weight of purified bovine submaxillary gland mucin (BSM) was determined as 1.6x10(6) Da by using static light scattering. Copyright 2000 Academic Press.  相似文献   

15.
The isothermal adsorption and desorption of monolayer water on a Ag(110) surface in the temperature range of 130-137 K were characterized by monitoring second-harmonic (SH) generation from the silver surface. The SH intensity resonantly enhanced by the silver surface-state transition is highly sensitive to the amount of silver surface area covered by water and allows the observation of an abrupt change in the adsorption/desorption behavior at 133.5 K. At temperatures below 133.5 K water wets the Ag surface in a two-dimensional structure with a measured desorption energy of 25.0 (+/-3.3) kJ/mol. At temperatures greater than 133.5 K water desorbs from three-dimensional clusters with a measured desorption energy of 48.3 (+/-2.2) kJ/mol, in agreement with temperature-programmed desorption measurements. This wetting-dewetting transition of water adsorbed on the silver surface at 133.5 K is supported by classical nucleation theory calculations.  相似文献   

16.
Dicyanoacetylene adsorbed on amorphous ice water at 10 K presents an interaction with the dangling H site and induces a s(4) adsorption site formation due to the restructuring of the ice bulk. Warming up the sample provokes the dicyanoacetylene desorption from the H(2)O ice film, which could be due to the beginning of the ice crystallization process. The desorption activation energy measured by temperature-programmed desorption (E(d) = 42 +/- 5 kJ x mol(-1)) is in good agreement with that calculated (E(d) = 46 kJ x mol(-1)) and gives evidence of a hydrogen-bonded adsorbed state on amorphous ice films.  相似文献   

17.
My voyage of discovery to proteins in flatland ...and beyond   总被引:1,自引:0,他引:1  
The 9th-10th type III fibronectin domain pair (9-10FNIII) has found widespread use as a biomimetic surface for cell adhesion. However, the effect of mutations to 9-10FNIII on its surface adsorption characteristics have not been investigated. Here we address this issue using total internal reflection fluorescence (TIRF) and circular dichroism spectroscopy, comparing two conformationally stable 9-10FNIII mutants against the wild type. Desorption of the 9-10FNIII mutants from the silica surface was minimal in comparison to desorption of 9-10FNIII. The extent and rate of protein desorption from silica was empirically matched by loss of secondary structure upon adsorption, with only the spectrum for 9-10FNIII showing extensive loss of the beta-sandwich fold. For the proteins adsorbed to hydrophobic surfaces, only the CD spectra for the 9-10FNIII mutant constrained via an interdomain disulphide bridge showed similarity with the corresponding solution structure. Since the binding of 9-10FNIII to integrin alpha5beta1 is highly dependent on the relative spatial arrangement of the two domains, we suggest that the observed differences in cell adhesion and spreading on wild type 9-10FNIII and mutants may in part be attributed to the extent of protein desorption and unfolding at the surface.  相似文献   

18.
Analytical investigation of two-step adsorption kinetics on surfaces   总被引:1,自引:0,他引:1  
Analytical equations of two-step adsorption kinetics on surface have been derived. Moreover, computer simulations have been carried out to interpret various experimental adsorption kinetics previously reported. In the first case, molecules are further adsorbed from a solution onto a layer consisting of previously adsorbed molecules. This model was applied to the adsorption kinetics of hexadecyltrimethylammonium chloride (C16TAC) on a self-assembled monolayer (SAM) of 3-mercaptopropionic acid (T. Imae, H. Torii, J. Phys. Chem. B 104 (2000) 9218). The second case is that some of the initially adsorbed molecules are released from the adlayer with further time course. The adsorption of C16TAC on 1-dodecanethiol SAM (T. Imae, T. Takeshita, K. Yahagi, Stud. Surf. Sci. Catal. 132 (2001) 477) agrees with this mechanism. The strict mathematical developments presented in this work are demanded to specify the physical meaning of observed non-Langmuir adsorption kinetics, consisting of the two exponential terms.  相似文献   

19.
The ability of proteins to provide stability in foams is greatly influenced by their interfacial dilatational rheological properties. Surface tension response of a pulsatingbubble with an adsorbed layer of beta-lactoglobulin was measured for different frequencies and protein concentrations using a pulsating bubble tensiometer. A methodology, accounting for adsorption/desorption as well as variation of surface concentration due to expansion/contraction, was developed for the evaluation of surface dilatational elasticity and viscosity at different frequencies from these measurements. The adsorption rate constants were inferred from the surface pressure dynamics of protein adsorption using a Langmuir minitrough. The desorption rates were shown to be negligible for beta-lactoglobulin from the surface pressure response of a spread monolayer when subjected to compression in a Langmuir minitrough. The proposed model was employed to infer the interfacial dilatational viscosity and elasticity of an adsorbed beta-lactoglobulin layer at the air-water interface from experimental pulsating bubble data for protein concentrations in the range of 0.01-0.5 wt % at pH 7. As expected, the interfacial dilatational rheological properties were found to be higher at higher protein concentrations, this effect being less pronounced for dilatational elasticity. Heating at 80 degrees C for 30 min was found to result in higher interfacial dilatational viscosity and lower interfacial dilatational elasticity though this difference was within experimental error. The traditional approach for the inference of interfacial dilatational rheological properties is found to overpredict the interfacial dilatational elasticity whereas the viscosity values do not differ significantly from those obtained using the current analysis.  相似文献   

20.
In this paper we present surface dilatational properties of soy globulins (beta-conglycinin, glycinin, and reduced glycinin with 10 mM of dithiothreitol (DTT)) adsorbed onto the air-water interface, as a function of adsorption time. The experiments were performed at constant temperature (20 degrees C), pH (8.0), and ionic strength (0.05 M). The surface rheological parameters were measured as a function of protein concentration (ranging from 1 to 1x10(-3)% wt/wt). We found that the surface dilatational modulus, E, increases, and the phase angle, phi, decreases with time, theta, which may be associated with protein adsorption. These phenomena have been related to protein adsorption, unfolding, and/or protein-protein interactions (at long-term adsorption) as a function of protein concentration in solution. From a rheological point of view, the surface viscoelastic characteristics of soy globulin films adsorbed at the air-water interface are practically elastic. The main conclusion is that the dilatational properties of the adsorbed films depend on the molecular structure of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号