首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pharmacokinetics of drugs in the human interstitial space fluid can be monitored by means of microdialysis. However, the small-volume microdialysis samples containing low drug concentrations require a sensitive analytical method. In the present study, micellar electrokinetic chromatography (MEKC) is described for the quantification of cefpirome in human microdialysis and plasma samples. Sample preparation of human plasma samples by ultracentrifugation was suitable for comparison of plasma and microdialysate concentrations. Limits of quantification were 2 microg/mL and 0.3 microg/mL for plasma and microdialysate samples, respectively. The limit of detection (LOD) was estimated at 0.2 microg/mL for the plasma and microdialysate samples. In conclusion, MEKC is a reliable and reproducible technique for measuring cefpirome concentrations in microdialysates as well as centrifuged plasma samples.  相似文献   

2.
The usefulness of microdialysis was examined for the chronological determination of caffeine concentration in the brain and cerebrospinal fluids (CSF) following intravenous administration of caffeine in rats. The recovery percent of caffeine by microdialysis, the concentration ratio of caffeine in the dialysate against that in the brain tissue or CSF was determined. The recovery percent was proved to be constant at 5 different steady-state plasma concentrations of caffeine (0.1-280 nmol/ml) and in different collecting periods of dialysate ranging from 30 s to 10 min. The mean recovery percent in the brain and CSF were 10.9 and 13.1%, respectively. Thus, microdialysis was proved useful for determination of drug concentration in the tissue and biological fluids with time resolution of more than 30 s. The microdialysis method was then applied for the chronological determination of caffeine concentration in the brain and CSF following intravenous bolus administration. The estimated caffeine concentration in the brain and CSF was the same as those obtained by direct determination in isolated brain and CSF, respectively. Transfer of caffeine from plasma to brain and CSF were further pharmacokinetically analyzed using a modified 2-compartment model. In this kinetic model, the transfer of caffeine between the CSF and brain was neglected, since the mutual transfer of caffeine was not detected in in vivo experiments. Calculated curves were well fitted on observed caffeine concentrations in the plasma, brain and CSF.  相似文献   

3.
An ion-pairing liquid chromatography/electrospray tandem mass spectrometry (LC/ES-MS/MS) method with in vivo microdialysis for the determination of amphetamine in rat brain has been developed. A microdialysis probe was surgically implanted into the striatum of the rat and artificial cerebrospinal fluid (aCSF) was used as the perfusion medium. Samples were collected and then analyzed off-line by LC/ES-MS/MS. A reversed-phase C18 column was employed for LC separation and MS/MS was utilized for detection. Trifluoroacetic acid (TFA) was added to the mobile phase (acetonitrile/water) as an ion-pairing reagent. Detection was by ES-MS/MS directly, and no post-column addition of organic modifier was needed. Dual linear ranges were determined from 0.1-0.5 microg/mL and 0.005-0.1 microg/mL, respectively. The detection limit, based on a signal-to-noise ratio of 3, was 0.001 microg/mL (5 nM). Good precision and accuracy were obtained. The applicability of this newly developed method was demonstrated by continuous monitoring of amphetamine concentrations in rat brain. Amphetamine reached a maximum concentration of 0.086 +/- 0.017 microg/mL over 20-40 min after a single 3.0 mg/kg intraperitoneal administration.  相似文献   

4.
A novel series of 3-(2-substituted-3-oxo-2,3-dihydropyridazin-6-yl)-2-phenylpyrazolo[1,5-a]pyridines (5-38) were synthesized and evaluated for their in vitro adenosine A1 and A(2A) receptor binding activities, and in vitro metabolism by rat liver in order to search for orally active compounds. Most of the test compounds were potent adenosine A1 receptor antagonists with high A1 selectivity and the A1 affinity and A1 selectivity of carbonyl derivatives (5-11) was particularly high. In particular, compound 7 was an extremely potent and selective adenosine A1 antagonist with high A1 selectivity (Ki=0.026 nM, A(2A)/A1=5400). In terms of metabolic stability, 2-oxopropyl (5), 2-hydroxypropyl (12), N-methylacetamide (16), 2-(piperidin-1-yl)ethyl (28) and 1-methylpiperidin-4-yl (32, FR194921) were the most stable compounds in this series of analogues. Further in vivo evaluation indicated that compounds 5, 13, 17, 28 and 32 were detected in both plasma and brain after oral administration in rats. In particular, 32 displayed good plasma and brain concentrations (dose: 32 mg/kg (n=3); after 30 min, plasma conc.=3390+/-651nM, brain conc.=3670+/-496nM; after 60min, plasma conc.=1580+/-348nM, brain conc.=2143+/-434nM), and a good brain/plasma ratio (1.11+/-0.060 (30min), 1.39+/-0.172 (60min)). As a result, we could show that 32 is a good candidate for an orally active adenosine A1 receptor antagonist with high blood-brain barrier permeability and good bioavailability (Ki=6.6nM, A(2A)/A1=820, BA=60.6+/-4.9% (32 mg/kg)).  相似文献   

5.
A paired-ion high-performance liquid chromatographic method was developed to measure concentrations of 2',3'-dideoxyinosine (ddI) in human plasma, urine and cerebrospinal fluid. Samples were prepared using a solid-phase extraction technique which allows for a five-fold concentration of the drug. 2'-Deoxyguanosine was added as an internal standard prior to the extraction. Recoveries for 2'-deoxyguanosine and ddI were 80 +/- 15 and 85 +/- 10%, respectively. Extracted samples were then injected onto a C18 column and eluted isocratically with a mobile phase containing 0.1% of the ion-pairing reagent, heptafluorobutyric acid, and 5% acetonitrile. The retention time was 7.4 min for 2'-deoxyguanosine and 8.4 min for ddI. The lower limit of detection for ddI is 0.1 microM. Using this technique the acid lability of ddI was demonstrated and the plasma concentration versus time profile from a patient receiving the drug was examined.  相似文献   

6.
In order to study the mechanism of propranolol-quinidine interaction, the effects of quinidine on propranolol pharmacokinetics were examined in male Wistar rats. The concurrent oral administration of quinidine (10 mg/kg) markedly increased the plasma concentration of propranolol (2.5 mg/kg), and the area under the propranolol concentration-time curve increased about 3.6-fold. These results are consistent with previous observations in man and indicate the possible usefulness of the male Wistar rat as an animal model for investigating the mechanisms of the drug interaction. When propranolol was given intravenously, a concurrent administration of quinidine increased the apparent distribution volume of propranolol, mainly by decreasing its plasma protein binding. However, the systemic clearance of propranolol was not significantly altered by quinidine. Thus, quinidine increased the availability of oral propranolol from 13.8 +/- 2.2 to 44.2 +/- 4.6% (p less than 0.01). Furthermore, quinidine delayed the elimination of propranolol from the isolated perfused rat liver. These results indicate that quinidine reduces the presystemic elimination of propranolol in the liver, thereby increasing its systemic availability after oral administration.  相似文献   

7.
A technique involving rapid sampling of cephaloridine in rat blood was achieved using a combination of microdialysis and sensitive microbore liquid chromatography. A microdialysis probe was inserted into the jugular vein/right atrium of a Sprague-Dawley rat. Then after a real-time collection of the analyte by microdialysis, the dialysate was automatically injected into a liquid chromatographic system via an on-line injector. Following a 2 h stabilization period after the surgical procedure, cephaloridine (20 mg/kg, i.v.) was then administered via the femoral vein. Isocratic elution of cephaloridine was carried out with a mobile phase containing methanol-20 mM monosodium phosphate (25:75, v/v, pH 5.5), and the flow rate of the mobile phase was 0.05 mL/min within 10 min. Intra- and inter-assay accuracy and precision of the assay were each less than 10%. The in vivo recovery of the cephaloridine from the microdialysate was 49.7 +/- 8.0% and 42.4 +/- 8.4% for 0.5 and 1 microg/mL standards (n = 6), respectively. Based on the pharmacokinetic analysis, the elimination half-life was 32.2 +/- 8.6 min by cephaloridine administration (20 mg/kg, i.v., n = 6).  相似文献   

8.
Meropenem is a carbapenem antibiotic with a wide spectrum of activity against both Gram-positive and Gram-negative bacteria. Because of its clinical efficacy, meropenem is an excellent choice for the treatment of serious infections in both adults and children. The knowledge of tissue concentrations of antibiotic in an infection site is valuable for the prediction of treatment outcome. To investigate the biliary disposition of meropenem, we utilized a minimally invasive sampling technique with a shunt linear microdialysis probe for continuous sampling in the biliary excretion studies. Analysis of meropenem in the dialysates was achieved using a LiChrosorb RP-18 column (Merck, 250 x 4.6 mm I.D.; particle size 5 microm) maintained at ambient temperature. The mobile phase was 50 mM monosodium phosphoric acid-methanol (80:20, v/v, pH 3.0). The UV detector wavelength was set at 298 nm. The area under the concentration-time curve and elimination half-lives of meropenem were about 6144 +/- 1494 min microg/ml and 61 +/- 17 min, respectively. This study represents a successful application of the microdialysis technique, which is an effective method for pharmacokinetic and biliary drug excretion studies.  相似文献   

9.
Plasma protein binding of weakly basic drugs such as propranolol and quinidine was determined in rats with carbon tetrachloride (CCl4)-induced hepatic disease. Free fractions of propranolol and quinidine in the plasma of rats at 24 h after CCl4-intoxication were decreased by 41 and 30%, respectively, compared to those of control rats. An addition of Tris (butoxyethyl) phosphate (TBEP), a specific displacer for basic drugs from alpha 1-acid glycoprotein (AGP), to the plasma increased the free fractions of the basic drugs, resulting in no difference in the extent of the plasma free fraction of each drug between control and CCl4-intoxicated rats. Plasma concentration of AGP in CCl4-intoxicated rats was elevated 2.7-fold of that in control rats at 24 h after the CCl4 intoxication and reached a peak of 4.8-fold elevation at 48 h. A regression analysis revealed a high degree of positive correlation between ratios of bound to free fraction of propranolol and plasma concentrations of AGP. These results suggest that the plasma protein binding of the basic drugs was increased mainly due to the rise in the plasma AGP concentration in CCl4-intoxicated rats.  相似文献   

10.
Capillary zone electrophoresis was employed to determine cefazolin, a first-generation cephalosporin antibiotic, in plasma and microdialysis samples from patients. To shorten the analysis, the samples were injected from the short end of the capillary, resulting in a separation time of < 3 min. Due to a high ionic strength of the biological matrices it was necessary to optimize the stacking conditions. For microdialysis samples a 1:10 dilution with water before injection was sufficient to obtain good peak shape. For plasma samples a protein removal step was required to obtain clean electropherograms and a good peak shape. Acetonitrile was used as precipitant resulting in an enhanced sample stacking in comparison to water dilution. The disadvantage of using acetonitrile was severe evaporation loss making quantitation impossible. A self-sealing film was used to seal each individual sample vial to suppress evaporation during long-term sequences. The calibration curves for spiked plasma and cefazolin in Ringer's solutions were linear in the range from 2-500 and 2.5-100 microg/mL, respectively. Limits of detection were 1.0 and 2.0 microg/mL in plasma and microdialysis samples, respectively. The assay was successfully applied to plasma and microdialysis samples obtained in vivo from the interstial space fluid of subcutaneous adipose and muscle tissue of patients undergoing cardiac surgery.  相似文献   

11.
A simple and sensitive reversed-phase high performance liquid chromatographic method (HPLC) has been developed and validated for the routine analysis of diltiazem in human plasma and the study of the pharmacokinetics of the drug in the human body. Diltiazem and diazepa (internal standard) were extracted with a mixed organic solution of hexane, chloroform and isopropanol (60:40:5, v/v/v), and then HPLC separation of the drugs was performed on an Spherisorb C(18) column and detected by ultraviolet absorbance at 239 nm. The use of methanol-water solution (containing 2.8 mm triethylamine, 80:20, v/v) as the mobile phase at a fl ow-rate of 1.2 mL/min enables the baseline separation of the drugs free from interferences with isocratic elution. The method was linear in the clinical range 0-300 ng/mL and the lower limit of detection of diltiazem in plasma was 3 ng/mL. The range of percentage of relative standard deviation (%RSD) was from 3.5 to 6.8% for within-day analyses and from 6.2 to 8.4% for between-day analyses, respectively. The extraction recoveries of diltiazem from spiked human plasma (n = 5) at three concentrations were 91.4-104.0%. The method has been used to determine diltiazem in human plasma samples from eight volunteers who had taken diltiazem hydrochloride slow release tables and the data obtained was fitted with a program on computer to study the pharmacokinetics. The results showed that the peak level in plasma approximately averaged 118.5 +/- 14.3 ng/mL at 3.1 +/- 0.4 h, and the areas under the drug concentration curves (AUC) was 793.1 +/- 83.1 ng.h/mL.  相似文献   

12.
Salvianolic acid B is an herbal ingredient isolated from Salvia miltiorrhiza. An in vivo microdialysis sampling method coupled to high-performance liquid chromatography has been developed for continuous monitoring of protein-unbound salvianolic acid B in rat blood and bile. Microdialysis probes were inserted into the jugular vein/right atrium and bile duct of Sprague-Dawley rats, and a dose of 100 mg/kg salvianolic acid B was then administered via the femoral vein. Dialysates were collected and directly injected into a liquid chromatographic system. Salvianolic acid B was eluted using a microbore reversed-phase ODS 5 microm (150 mm x 1 mm I.D.) column. Isocratic elution of salvianolic acid B was achieved within 10 min using the liquid chromatographic system. The chromatographic mobile phase consisted of acetonitrile-methanol-20 mM monosodium phosphoric acid (pH 3.5) (10:30:60, v/v/v) containing 0.1 mM 1-octanesulfonic acid with 0.05 ml/min. The wavelength of the UV detector was set at 290 nm. Salvianolic acid B in both blood and bile dialysates was adequately determined using the liquid chromatographic conditions described, although the blank bile pattern was more complex. The retention times of salvianolic acid B in rat blood and bile dialysates were found to be 7.2 min. Peak-areas of salvianolic acid B were linear (r2 > 0.995) over a concentration range of 0.1-50 microg/ml. In vivo recoveries of microdialysis probes of salvianolic acid B in rat blood and bile averaged 22 +/- 2% and 41 +/- 1%, respectively. This study indicates that salvianolic acid B undergoes hepatobiliary excretion.  相似文献   

13.
Combination therapy with acyclovir and zidovudine is used for the treatment of herpes-infected immunocompromised patients. In the view of the optimal drug concentrations (minimum effective concentrations) for viral suppression and avoidance of drug toxicity, monitoring of drug levels has been considered essential to determine drug concentrations in plasma after administration of a dose of acyclovir and zidovudine. A simple, precise, and rapid RP-HPLC method has been developed for this purpose. Chromatographic separation was performed using methanol-water (50 + 50, v/v), pH 2.5 adjusted with orthophosphoric acid, as an isocratic mobile phase at a flow rate of 0.8 mL/min with an Inertsil ODS (C18) column (5 microm particle size, 250 x 4.60 mm id). Detection was carried out using a UV photo diode array detector at 258 nm. The plasma samples were prepared by a protein precipitation method. The retention time for acyclovir and zidovudine was 3.5 +/- 0.2 and 6.2 +/- 0.3 min, respectively. The method was linear in the range of 200-1800 and 400-3600 ng/mL with LOQ of 200 ng (SD = +/-1.4) and 400 ng (SD = +/-0.9) for zidovudine and acyclovir, respectively, in plasma. The mean accuracy was 98.0 and 96.4%, with average extraction recovery of 64.8 +/- 2.1 and 77.5 +/- 1.7% for lower nominal concentrations of acyclovir and zidovudine, respectively.  相似文献   

14.
Endogenous free or protein-associated 3-nitrotyrosine (3-NT) has been proposed as a biomarker of in vivo oxidative damage caused by nitrating agents. Isotopic dilution assay gaschromatographic/mass spectrometric (GC/MS) techniques have been employed to measure endogenous 3-NT levels. However, the quantitative normal plasma values reported so far are inconsistent. The results vary between the assays; they may have been influenced by in vitro artifactual nitration of tyrosine to 3-NT. In this study, a simple and artifact-free derivatization method for quantifying the endogenous 3-NT content of biological samples by GC/negative chemical ionization MS/MS is presented. The method is based on reduction of the nitro group of the molecule by dithionite, heptafluorobutyric acylation and subsequent methyl derivatization, di-O-methyldi-N-heptafluorobutyryl being the major derivative. The results showed excellent GC and MS properties, such as low background and a favorable fragmentation pattern. Endogenous 3-NT was unequivocally quantified using collision-induced dissociation in the selected reaction monitoring mode, whereas co-elution of unknown compounds interfered in the selected-ion monitoring mode. We found that tyrosine was nitrated in the presence of nitrate anions and heptafluorobutyric anhydride, but the product appeared as a di-O-methylmono-N-heptafluorobutyryl derivative. Therefore, artifactually formed 3-NT did not contribute to the measured endogenous 3-NT level owing to its different derivative structure. The method was applied to determine endogenous 3-NT in human plasma and plasma proteins. A detection limit of 0.03 nM for (13)C(6)-labeled 3-NT in plasma samples was established and the response was linear over a concentration range of 0-50 nM (R(2) > 0.999). The endogenous free 3-NT level (mean +/- SD) in ultrafiltered plasma samples from 12 healthy adults was 0.74 +/- 0.30 nM. The mean concentration of 3-NT in their plasma total proteins was 0.60 +/- 0.40 pmol mg(-1). Hence, the described method is selective, eliminates the problem of artifactual nitration and is feasible for the quantification of free and protein-associated 3-NT in biological samples such as plasma.  相似文献   

15.
In the present study we developed and validated a liquid chromatography/tandem mass spectrometry (LC‐MS/MS) assay for the determination of flucloxacillin in human plasma and microdialysis samples and cloxacillin in microdialysis samples, using oxacillin as the internal standard for the assay. The samples were separated on a UPLC BEH C18,1.7 µm column (2.1 × 50 mm) and analyzed by a tandem–quadrupole mass spectrometer in multiple reaction monitoring mode using an electronspray ionization interface. For flucloxacillin the method was demonstrated to be accurate and precise in the linearity range of 1–30 mg/L in plasma and 0.05–5.0 mg/L for microdialysate with a regression coefficient (r) of 0.9986 and 0.9989 in plasma and microdialysate respectively. For cloxacillin it was accurate and precise in the range of 0.1–5.0 mg/L for microdialysate with a regression coefficient of 0.9972. The method presents a high sensitivity for flucloxacillin (lower limit of quantification of 1 mg/L for plasma and 0.05 mg/L for microdialysis samples) combined with a low within‐ and between‐day variation (<5.0% for flucloxacillin and cloxacillin in microdialysis samples and <6.5% for plasma samples of flucloxacillin). The validation experiments for the microdialysis probes showed a relative recovery of 85.5% for flucloxacillin at a flow rate of 1.0 μL/min. The results justify the use of this assay for clinical studies for measuring free unbound tissue concentrations of flucloxacillin in patients with a Staphylococcus aureus bacteremia. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
To analyze unbound cefamandole in rat blood, a method combing microdialysis with microbore liquid chromatography has been developed. A microdialysis probe was inserted into the jugular vein/right atrium of male Sprague-Dawley rats to examine the unbound cefamandole level in the rat blood following cefamandole administration (50 mg/kg, i.v.). The dialysates were directly submitted to a liquid chromatographic system. Samples were eluted with a mobile phase containing acetonitrile-methanol-100 mM monosodium phosphate (pH 5.0; 15:20:65, v/v). The UV wavelength was set at 270 nm for monitoring the analyte. Using the retrograde method, at infusion concentrations of 1 microg/mL of cefamandole, the in vivo microdialysis recoveries were 55.44% for the rat blood (n = 6). Intra- and inter-assay accuracy and precision of the analyses were < or = 10% in the range of 0.1-10 microg/mL. Pharmacokinetic parameters were calculated from the recovery-corrected dialysate concentrations of cefamandole vs time data. The elimination half-life (t1/2,beta) was 21.6 +/- 1.6 min. The results suggest that the pharmacokinetics of unbound cefamandole in blood following cefamandole administration (50 mg/kg, i.v., n = 5) fit best to the two-compartmental model.  相似文献   

17.
A simple and reliable reversed-phase high-performance liquid chromatography method was developed and validated for the determination of DHP-014, a niguldipine analogue with potent P-glycoprotein inhibitory and negligible calcium channel blocking properties, in rat plasma. DHP-014 and niguldipine hydrochloride (the internal standard) were extracted from rat plasma by liquid extraction using hexane. DHP-014 was then separated by HPLC on a C18 column and quantified by ultraviolet detection at 238 nm. The mobile phase consisted of acetonitrile-aqueous 5 mM phosphate buffer (65:35, v/v) containing 0.4% (v/v) triethylamine adjusted to pH 7.0. The mean extraction efficiency of DHP-014 was 109.0 +/- 12.9, 97.7 +/- 8.0 and 102.9 +/- 7.5% for DHP-014 concentrations of 10, 50 and 100 nM, respectively (n = 5). The method was linear over the concentration range 2.5-200 nM with a regression coefficient of 0.998. The limit of detection of DHP-014 in rat plasma was 1.0 nM. The intra- and inter-day coefficients of variation for DHP-014 in rat plasma were 4.7-7.9 and 6.9-9.9%, respectively. The intra- and inter-day accuracy was 98.2-99.5 and 97.9-103%, respectively. The bioanalytical technique was used to determine DHP-014 in plasma samples in a pharmacokinetic study of DHP-014 administered to female Sprague-Dawley rats.  相似文献   

18.
A method based on capillary electrophoresis (CE) with electrochemical (EC) detection for the determination of both total homocysteine (tHcy) and protein-bound homocysteine (pbHcy) in plasma is described. Both end-column and off-column amperometric detection were investigated. Off-column detection resulted in a more sensitive assay for the determination of homocysteine (Hcy). The detection limit for homocysteine was 500 nM using off-column EC detection and the response was linear over the range 1-100 microM. Therefore, this assay is appropriate for the quantification of Hcy over the physiological concentration ranges found in all disease states. Methodologies for the determination of tHcy and pbHcy in human plasma were investigated and optimized and the concentrations of both pbHcy and tHcy in plasma obtained from a healthy individual were determined to be 2.79+/-0.31 nuM (n = 4) and 3.37+/-0.15 microM (n = 3), respectively. The methodology was then transferred to a microchip CE-EC format and Hcy and reduced glutathione (GSH) were detected. Future work will focus on the development of ancillary methodologies to identify the other forms of Hcy in vivo.  相似文献   

19.
Preparations of beta-blockers, propranolol-HCl and atenolol, in poly(vinyl alcohol) (PVA) hydrogel were designed for the therapeutic treatment of hypertension by transrectal delivery. In vitro release characteristics and plasma drug concentration profiles after rectal administration in rats and dogs were examined. The PVA hydrogels containing beta-blockers were prepared by a low-temperature crystallization method. The release of beta-blockers from hydrogel preparations was consistent with Fickian diffusion (Higuchi model); the drug release versus the square root of release time profile gave a straight line over 60% of the total release process. The release of beta-blockers from hydrogel preparations increased at higher concentrations of PVA in the hydrogel preparations and was not affected by the pH of hydrogel preparations. Plasma concentrations of beta-blockers after rectal administration of hydrogels were higher than those after administration of suppositories (Witepsol H-15) in rats and dogs. The drug plasma concentrations increased at higher concentrations of PVA in hydrogel preparations. In the case of propranolol, which is a hepatic high-clearance drug, area under the blood concentration curve, 0-8 h after rectal administration of a hydrogel preparation (20% w/w PVA, pH 7.0) was 2.16 times and 5.26 times higher than those obtained with Witepsol H-15 suppository and oral administration, respectively. Rectal administration with PVA hydrogels is a favorable route for a hepatic high-clearance drug such as propranolol.  相似文献   

20.
Genistein, the major isoflavone in soybeans, has been shown to have a wide range of effects. We used an HPLC-UV combined with microdialysis method to detect unbound genistein in rat blood, brain and bile. Genistein dialysates were eluted with a mobile phase containing acetonitrile-water (40:60, v/v, pH 3.5 adjusted by 0.1% acetic acid). Samples were separated using a phenyl (5 microm) column maintained at ambient temperature. The UV detector wavelength was set at 259 nm. The flow rate was 1.0 m/min. The limit of quantitation for genistein was 50 ng/ml. The in vitro recoveries of genistein were 31 +/- 1, 13 +/- 1 and 59 +/- 4% in microdialysis probes of blood, brain and bile, respectively (n = 4). Inter- and intra-assay accuracy and precision of the analysis were less than 10% in the concentration ranges of 0.05-5.0 microg/ml. A small ratio of genistein penetrates the blood-brain barrier (BBB) and goes through hepatobiliary excretion after genistein administration (10 or 30 mg/kg, i.v.). The brain-to-blood (AUC(brain)/AUC(blood)) and bile-to-blood (AUC(bile)/AUC(blood)) distribution ratios were 0.04 +/- 0.01 and 1.85 +/- 0.42, respectively for the dosage of genistein 30 mg/kg. After co-administration of cyclosporine, a P-glycoprotein (P-gp) inhibitor, the distribution ratios of genistein in brain and bile were not significantly altered. These results suggest that the BBB penetration and hepatobiliary excretion of genistein may not regulated by P-gp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号