首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relative energetics of mu-eta1:eta1 (trans end-on) and mu-eta2:eta2 (side-on) peroxo isomers of Cu2O2 fragments supported by 0, 2, 4, and 6 ammonia ligands have been computed with various density functional, coupled-cluster, and multiconfigurational protocols. There is substantial disagreement between the different levels for most cases, although completely renormalized coupled-cluster methods appear to offer the most reliable predictions. The significant biradical character of the end-on peroxo isomer proves problematic for the density functionals, while the demands on active space size and the need to account for interactions between different states in second-order perturbation theory prove challenging for the multireference treatments. In the latter case, it proved impossible to achieve any convincing convergence.  相似文献   

2.
With the goal of understanding how the nature of the tridentate macrocyclic supporting ligand influences the relative stability of isomeric mu-eta 2:eta 2-peroxo- and bis(mu-oxo)dicopper complexes, a comparative study was undertaken of the O2 reactivity of Cu(I) compounds supported by the 10- and 12-membered macrocycles, 1,4,7-R3-1,4,7-triazacyclodecane (R3TACD; R = Me, Bn, iPr) and 1,5,9-triisopropyl-1,5,9-triazacyclododecane (iPr3TACDD). While the 3-coordinate complex [(iPr3TACDD)Cu]SbF6 was unreactive with O2, oxygenation of [(R3TACD)Cu(CH3CN)]X (R = Me or Bn; X = ClO4- or SbF6-) at -80 degrees C yielded bis(mu-oxo) species [(R3TACD)2Cu2(mu O)2]X2 as revealed by UV-vis and resonance Raman spectroscopy. Interestingly, unlike the previously reported system supported by 1,4,7-triisopropyl-1,4,7-triazacyclononane (iPr3TACN), which yielded interconverting mixtures of peroxo and bis(mu-oxo) compounds (Cahoy, J.; Holland, P. L.; Tolman, W. B. Inorg. Chem. 1999, 38, 2161), low-temperature oxygenation of [(iPr3TACD)Cu(CH3CN)]SbF6 in a variety of solvents cleanly yielded a mu-eta 2:eta 2-peroxo product, with no trace of the bis(mu-oxo) isomer. The peroxo complex was characterized by UV-vis and resonance Raman spectroscopy, as well as an X-ray crystal structure (albeit of marginal quality due to disorder problems). Intramolecular attack at the alpha C-H bonds of the substituents was indicated as the primary decomposition pathway of the oxygenated compounds through examination of the decay kinetics and the reaction products, which included bis(mu-hydroxo)- and mu-carbonato-dicopper complexes that were characterized by X-ray diffraction. A rationale for the varying results of the oxygenation reactions was provided by analysis of (a) the X-ray crystal structures and electrochemical behavior of the Cu(I) precursors and (b) the results of theoretical calculations of the complete oxygenated complexes, including all ligand atoms, using combined quantum chemical/molecular mechanics (integrated molecular orbital molecular mechanics, IMOMM) methods. The size of the ligand substituents was shown to be a key factor in controlling the relative stabilities of the peroxo and bis(mu-oxo) forms, and the nature of this influence was shown by both theory and experiment to depend on the ligand macrocycle ring size.  相似文献   

3.
Bis(mu-oxo)dinickel(III) complexes supported by a series of bis[2-(2-pyridyl)ethyl]amine ligands have been successfully generated by treating the corresponding bis(mu-hydroxo)dinickel(II) complexes or bis(mu-methoxo)dinickel(II) complex with an equimolar amount of H(2)O(2) in acetone at low temperature. The bis(mu-oxo)dinickel(III) complexes exhibit a characteristic UV-vis absorption band at approximately 410 nm and a resonance Raman band at 600-610 cm(-1) that shifted to 570-580 cm(-1) upon (18)O-substitution. Kinetic studies and isotope labeling experiments using (18)O(2) imply the existence of intermediate(s) such as peroxo dinickel(II) in the course of formation of the bis(mu-oxo)dinickel(III) complex. The bis(mu-oxo)dinickel(III) complexes supported by the mononucleating ligands (L1(X) = para-substituted N,N-bis[2-(2-pyridyl)ethyl]-2-phenylethylamine; X = OMe, Me, H, Cl) gradually decompose, leading to benzylic hydroxylation of the ligand side arm (phenethyl group). The kinetics of the ligand hydroxylation process including kinetic deuterium isotope effects (KIE), p-substituent effects (Hammett plot), and activation parameters (Delta H(H)(*) and Delta S(H)(*)) indicate that the bis(muxo)dinickel(III) complex exhibits an ability of hydrogen atom abstraction from the substrate moiety as in the case of the bis(mu-oxo)dicopper(III) complex. Such a reactivity of bis(mu-oxo)dinickel(III) complexes has also been suggested by the observed reactivity toward external substrates such as phenol derivatives and 1,4-cyclohexadiene. The thermal stability of the bis(mu-oxo)dinickel(III) complex is significantly enhanced when the dinucleating ligand with a longer alkyl strap is adopted instead of the mononucleating ligand. In the m-xylyl ligand system, no aromatic ligand hydroxylation occurred, showing a sharp contrast with the reactivity of the (mu-eta(2):eta(2)-peroxo)dicopper(II) complex with the same ligand which induces aromatic ligand hydroxylation via an electrophilic aromatic substitution mechanism. Differences in the structure and reactivity of the active oxygen complexes between the nickel and the copper systems are discussed on the basis of the detailed comparison of these two systems with the same ligand.  相似文献   

4.
The X-ray structure of a 1:1 Cu/O(2) adduct revealed side-on (eta(2)) O(2) coordination. Density functional calculations corroborated the structure, indicated a significant contribution of a Cu(III)-(O(2)(2-)) resonance form, and provided insights into the key bonding interactions. Reaction of a 1:1 adduct supported by a slightly different beta-diketiminate ligand with Cu(I) reagents resulted in the formation of novel asymmetric bis(mu-oxo) complexes that were identified by EPR, UV-vis, and Raman spectroscopy, as well as by an X-ray structure in one instance.  相似文献   

5.
The relative energies of side-on versus end-on binding of molecular oxygen to a supported Cu(I) species, and the singlet versus triplet nature of the ground electronic state, are sensitive to the nature of the supporting ligands and, in particular, depend upon their geometric arrangement relative to the O2 binding site. Highly correlated ab initio and density functional theory electronic structure calculations demonstrate that optimal overlap (and oxidative charge transfer) occurs for the side-on geometry, and this is promoted by ligands that raise the energy, thereby enhancing resonance, of the filled Cu dxz orbital that hybridizes with the in-plane pi* orbital of O2. Conversely, ligands that raise the energy of the filled Cu dz2 orbital foster a preference for end-on binding as this is the only mode that permits good overlap with the in-plane O2 pi*. Because the overlap of Cu dz2 with O2 pi* is reduced as compared to the overlap of Cu dxz with the same O2 orbital, the resonance is also reduced, leading to generally more stable triplet states relative to singlets in the end-on geometry as compared to the side-on geometry, where singlet ground states become more easily accessible once ligands are stronger donors. Biradical Cu(II)-O2 superoxide character in the electronic structure of the supported complexes leads to significant challenges for accurate quantum chemical calculations that are best addressed by exploiting the spin-purified M06L local density functional, single-reference completely renormalized coupled-cluster theory, or multireference second-order perturbation theory, all of which provide predictions that are qualitatively and quantitatively consistent with one another.  相似文献   

6.
The variation of ligand para substituents on pyridyl donor groups of tridentate amine copper(I) complexes was carried out in order to probe electronic effects on the equilibrium between mu-eta2:eta2-(side-on)-peroxo [Cu(II)2(O2(2-))]2+ and bis(mu-oxo) [Cu(III)2(O(2-))2] species formed upon reaction with O2. [Cu(I)(R-PYAN)(MeCN)n]B(C6F5)4 (R-PYAN = N-[2-(4-R-pyridin-2-yl)-ethyl]-N,N',N'-trimethyl-propane-1,3-diamine, R = NMe2, OMe, H, and Cl) (1R) vary over a narrow range in their Cu(II)/Cu(I) redox potentials (E(1/2) vs Fe(cp)2(+/0) = -0.40 V for 1(NMe2), -0.38 V for 1(OMe), -0.33 V for 1H, and -0.32 V for 1Cl) and in C-O stretching frequencies of their carbonyl adducts, 1R-CO: nu(C-O) = 2080, 2086, 2088, and 2090 cm(-1) for R = NMe2, OMe, H, and Cl, respectively. However, within this range of electronic properties for 1R, dioxygen reactivity is significantly affected. The reaction of 1Cl or 1H with O2 at -78 degrees C in CH2Cl2 gives UV-vis and resonance Raman spectra indicative of a mu-eta2:eta2-(side-on)-peroxo dicopper(II) adduct (2R). Compound 1(OMe) reacts with O2, yielding equilibrium mixtures of side-on peroxo (2(OMe)) and bis(mu-oxo) (3(OMe)) species. Oxygenation of 1(NMe2) leads to the sole generation of the bis(mu-oxo) dicopper(III) complex (3(NMe2)). A solvent effect was also observed; in acetone or THF, increased ratios of bis(mu-oxo) relative to side-on peroxo complex are observed. Thus, the equilibrium between a dicopper side-on peroxo and bis(mu-oxo) species can be tuned by ligand design-specifically, more electron donating ligands favor the formation of the latter isomer, and the peroxo/bis(mu-oxo) equilibrium can be shifted from one extreme to the other within the same ligand system. Observations concerning the reactivity of the dioxygen adducts 2H and 3(NMe2) toward external substrates are also presented.  相似文献   

7.
Copper(I) and -(II) complexes of beta-diketiminate ligands with identical flanking 2,6-diisopropylphenyl groups but divergent backbone substitution patterns were prepared and structurally characterized, and reactions of the Cu(I) species with O(2) at low temperature were explored. Despite being far removed from the coordinated metal ion, the different backbone patterns significantly influence the steric encumbrance exerted by the ligands, as revealed by differences in (a) the structural features of the Cu(I) and Cu(II) complexes and (b) the course of the oxygenation reactions of the Cu(I) compounds. With the less hindered ligand, a rare example of a neutral bis(mu-oxo)dicopper complex was identified on the basis of its diagnostic spectral features (UV-vis, resonance Raman, EPR) and the stoichiometry of O(2) uptake (Cu:O(2) = 2:1). In contrast, oxygenation of the Cu(I) complexes supported by the more hindered ligands yielded novel (superoxo)copper complexes, identified by a Cu:O(2) ratio of 1:1, a lack of an EPR signal, and O-isotope sensitive resonance Raman spectral features (nu(O)(-)(O) = 968 cm(-1), Delta(18)O(2) = 51 cm(-1)). Symmetric coordination of the superoxo ligand is proposed on the basis of Raman data acquired using (16)O(18)O (single peak at 943 cm(-1)).  相似文献   

8.
The activation of dioxygen by dopamine beta-monooxygenase (DbetaM) and peptidylglycine alpha-hydroxylating monooxygenase (PHM) is postulated to occur at a copper site ligated by two histidine imidazoles and a methionine thioether, which is unusual because such thioether ligation is not present in other O2-activating copper proteins. To assess the possible role of the thioether ligand in O2 activation by DbetaM and PHM, two new ligands comprising beta-diketiminates with thioether substituents were synthesized and Cu(I) and Cu(II) complexes were isolated. The Cu(II) compounds are monomeric and exhibit intramolecular thioether coordination. While the Cu(I) complexes exhibit a multinuclear topology in the solid state, variable-temperature 1H NMR studies implicate equilibria in solution, possibly including monomers with intramolecular thioether coordination that are structurally defined by DFT calculations. Low-temperature oxygenation of solutions of the Cu(I) complexes generates stable 1:1 Cu/O2 adducts, which on the basis of combined experimental and theoretical studies adopt side-on "eta(2)" structures with negligible Cu-thioether bonding and significant peroxo-Cu(III) character. In contrast to previously reported findings with related ligands lacking the thioether group, however (cf., Aboelella; et al. J. Am. Chem. Soc. 2004, 126, 16896), purging the solutions of the thioether-containing adducts with argon results in conversion to bis(mu-oxo)dicopper(III) species. A role for the thioether in promoting loss of O2 from the 1:1 Cu/O2 adduct and facilitating trapping of the resulting Cu(I) complex to yield the bis(mu-oxo) species is proposed, and the possible relevance of this role to that of the methionine in the active sites of DbetaM and PHM is discussed.  相似文献   

9.
We have performed calculations on the structures and stabilities of Al13H at the density functional and coupled-cluster levels of theory. There are low-symmetry (Cs on-top) isomers energetically comparable to well-known high-symmetry (C2nu bridge and C3nu hollow) isomers. The shape of the Al13 moieties in the Cs isomers is significantly distorted from icosahedral, and similar to Al13 cationic structures. Despite the high stability of the Al13H cluster, Al13H appears to be highly fluxional, as evidenced by multiple close-lying structures.  相似文献   

10.
A series of complexes with [Fe(II)(2)(mu-OH)(2)] cores has been synthesized with N3 and N4 ligands and structurally characterized to serve as models for nonheme diiron(II) sites in enzymes that bind and activate O(2). These complexes react with O(2) in solution via bimolecular rate-limiting steps that differ in rate by 10(3)-fold, depending on ligand denticity and steric hindrance near the diiron center. Low-temperature trapping of a (mu-oxo)(mu-1,2-peroxo)diiron(III) intermediate after O(2) binding requires sufficient steric hindrance around the diiron center and the loss of a proton (presumably that of a hydroxo bridge or a yet unobserved hydroperoxo intermediate). The relative stability of these and other (mu-1,2-peroxo)diiron(III) intermediates suggests that these species may not be on the direct pathway for dioxygen activation.  相似文献   

11.
The first systematic studies on the oxidation of neutral phenols (ArOH) by the mu-eta(2):eta(2)-peroxo)dicopper(II) complex (A) and the bis(mu-oxo)dicopper(III) complex (B) supported by the 2-(2-pyridyl)ethylamine tridentate and didentate ligands L(Py2) and L(Py1), respectively, have been carried out in order to get insight into the phenolic O-H bond activation mechanism by metal-oxo species. In both cases (A and B), the C-C coupling dimer was obtained as a solely isolable product in approximately 50% yield base on the dicopper-dioxygen (Cu(2)/O(2)) complexes, suggesting that both A and B act as electron-transfer oxidants for the phenol oxidation. The rate-dependence in the oxidation of phenols by the Cu(2)/O(2) complexes on the one-electron oxidation potentials of the phenol substrates as well as the kinetic deuterium isotope effects obtained using ArOD have indicated that the reaction involves a proton-coupled electron transfer (PCET) mechanism. The reactivity of phenols for net hydrogen atom transfer reactions to cumylperoxyl radical (C) has also been investigated to demonstrate that the rate-dependence of the reaction on the one-electron oxidation potentials of the phenols is significantly smaller than that of the reaction with the Cu(2)O(2) complexes, indicative of the direct hydrogen atom transfer mechanism (HAT). Thus, the results unambiguously confirmed that the oxidation of phenols by the Cu(2)O(2) complex proceeds via the PCET mechanism rather than the HAT mechanism involved in the cumylperoxyl radical system. The reactivity difference between A and B has also been discussed by taking account of the existed fast equilibrium between A and B.  相似文献   

12.
Cryogenic matrix isolation experiments have allowed the measurement of the UV absorption spectra of the high-energy non-chelated isomers of acetylacetone, these isomers being produced by UV irradiation of the stable chelated form. Their identification has been done by coupling selective UV-induced isomerization, infrared spectroscopy, and harmonic vibrational frequency calculations using density functional theory. The relative energies of the chelated and non-chelated forms of acetylacetone in the S0 state have been obtained using density functional theory and coupled-cluster methods. For each isomer of acetylacetone, we have calculated the UV transition energies and dipole oscillator strengths using the excited-state coupled-cluster methods, including EOMCCSD (equation-of-motion coupled-cluster method with singles and doubles) and CR-EOMCCSD(T) (the completely renormalized EOMCC approach with singles, doubles, and non-iterative triples). For dipole-allowed transition energies, there is a very good agreement between experiment and theory. In particular, the CR-EOMCCSD(T) approach explains the blue shift in the electronic spectrum due to the formation of the non-chelated species after the UV irradiation of the chelated form of acetylacetone. Both experiment and CR-EOMCCSD(T) theory identify two among the seven non-chelated forms to be characterized by red-shifted UV transitions relative to the remaining five non-chelated isomers.  相似文献   

13.
We present benchmark calculations of vertical electron detachment energies (VDEs) for various conformers of (H2O)n-, using both wave function and density functional methods, in sequences of increasingly diffuse Gaussian basis sets. For small clusters (n < or = 6), a systematic examination of VDE convergence reveals that it is possible to converge this quantity to within approximately 0.01 eV of the complete-basis limit, using a highly diffuse but otherwise economical Pople-style basis set of double-zeta quality, with 28 atom-centered basis functions per water molecule. Floating-center basis functions can be useful but are not required to obtain accurate VDEs. Second-order M?ller-Plesset perturbation (MP2) theory suffices to obtain VDEs that are within 0.05 eV of the results from both experiment and coupled-cluster theory, and which always err toward underbinding the extra electron. In contrast to these consistent predictions, VDEs calculated using density functional theory (DFT) vary widely, according to the fraction of Hartree-Fock exchange in a given functional. Common functionals such as BLYP and B3LYP overestimate the VDE by 0.2-0.5 eV, whereas a variant of Becke's "half and half" functional is much closer to coupled-cluster predictions. Exploratory calculations for (H2O)20- and (H2O)24- cast considerable doubt on earlier calculations that were used to assign the photoelectron spectra of these species to particular cluster isomers.  相似文献   

14.
Copper(I)-dioxygen reactivity has been examined using a series of 2-(2-pyridyl)ethylamine bidentate ligands (R1)Py1(R2,R3). The bidentate ligand with the methyl substituent on the pyridine nucleus (Me)Py1(Et,Bz) (N-benzyl-N-ethyl-2-(6-methylpyridin-2-yl)ethylamine) predominantly provided a (mu-eta(2):eta(2)-peroxo)dicopper(II) complex, while the bidentate ligand without the 6-methyl group (H)Py1(Et,Bz) (N-benzyl-N-ethyl-2-(2-pyridyl)ethylamine) afforded a bis(mu-oxo)dicopper(III) complex under the same experimental conditions. Both Cu(2)O(2) complexes gradually decompose, leading to oxidative N-dealkylation reaction of the benzyl group. Detailed kinetic analysis has revealed that the bis(mu-oxo)dicopper(III) complex is the common reactive intermediate in both cases and that O[bond]O bond homolysis of the peroxo complex is the rate-determining step in the former case with (Me)Py1(Et,Bz). On the other hand, the copper(I) complex supported by the bidentate ligand with the smallest N-alkyl group ((H)Py1(Me,Me), N,N-dimethyl-2-(2-pyridyl)ethylamine) reacts with molecular oxygen in a 3:1 ratio in acetone at a low temperature to give a mixed-valence trinuclear copper(II, II, III) complex with two mu(3)-oxo bridges, the UV-vis spectrum of which is very close to that of an active oxygen intermediate of lacase. Detailed spectroscopic analysis on the oxygenation reaction at different concentrations has indicated that a bis(mu-oxo)dicopper(III) complex is the precursor for the formation of trinuclear copper complex. In the reaction with 2,4-di-tert-butylphenol (DBP), the trinuclear copper(II, II, III) complex acts as a two-electron oxidant to produce an equimolar amount of the C[bond]C coupling dimer of DBP (3,5,3',5'-tetra-tert-butyl-biphenyl-2,2'-diol) and a bis(mu-hydroxo)dicopper(II) complex. Kinetic analysis has shown that the reaction consists of two distinct steps, where the first step involves a binding of DBP to the trinuclear complex to give a certain intermediate that further reacts with the second molecule of DBP to give another intermediate, from which the final products are released. Steric and/or electronic effects of the 6-methyl group and the N-alkyl substituents of the bidentate ligands on the copper(I)-dioxygen reactivity have been discussed.  相似文献   

15.
The coordination of Cu2+ by glyoxilic acid oxime (gao)--the oxime analogue of glycine amino acid--and its deprotonated (gao- and gao2-) species has been studied with different density functional methods. Single-point calculations have also been carried out at the single- and double- (triple) excitation coupled-cluster (CCSD(T)) level of theory. The isomers studied involve coordination of Cu2+ to electron-rich sites (O,N) of neutral, anionic, and dianionic gao species in different conformations. In contrast to Cu2+-glycine, for which the ground-state structure is bidentate with the CO2(-) terminus of zwitterionic glycine, for Cu2+-gao the most stable isomer shows monodentate binding of Cu2+ with the carbonylic oxygen of the neutral form. The most stable complexes of Cu2+ interacting with deprotonated gao species (gao- and gao2-) also take place through the carboxylic oxygens but in a bidentate manner. The results with different functionals show that, for these open shell (Cu2+-L) systems, the relative stability of complexes with different coordination environments (and so, different spin distribution) can be quite sensitive to the amount of "Hartree-Fock" exchange included in the functional. Among all the functionals tested in this work, the BHandHLYP is the one that better compares to CCSD(T) results.  相似文献   

16.
In situ XAFS combined with UV-vis-near-IR spectroscopy are used to identify the active site in copper-loaded ZSM-5 responsible for the catalytic decomposition of NO. Cu-ZSM-5 was probed with in situ XAFS (i) after O(2) activation and (ii) while catalyzing the direct decomposition of NO into N(2) and O(2). A careful R-space fitting of the Cu K-edge EXAFS data is presented, including the use of different k-weightings and the analysis of the individual coordination shells. For the O(2)-activated overexchanged Cu-ZSM-5 sample a Cu.Cu contribution at 2.87 A with a coordination number of 1 is found. The corresponding UV-vis-near-IR spectrum is characterized by an intense absorption band at 22 700 cm(-1) and a relatively weaker band at 30 000 cm(-1), while no corresponding EPR signal is detected. Comparison of these data with the large databank of well-characterized copper centers in enzymes and synthetic model complexes leads to the identification of the bis(mu-oxo)dicopper core, i.e. [Cu(2)(mu-O)(2)](2+). After dehydration in He, Cu-ZSM-5 shows stable NO decomposition activity and the in situ XAFS data indicate the formation of a large fraction of the bis(mu-oxo)dicopper core during reaction. When the Cu/Al ratio of Cu-ZSM-5 exceeds 0.2, both the bis(mu-oxo)dicopper core is formed and the NO decomposition activity increases sharply. On the basis of the in situ measurements, a reaction cycle is proposed in which the bis(mu-oxo)dicopper core forms the product O(2) on a single active site and realizes the continuous O(2) release and concomitant self-reduction.  相似文献   

17.
The unstable trifluoroacetonitrile N-oxide molecule, CF3CNO, has been generated in high yield in the gas phase from CF3BrC=NOH and studied for the first time by gas-phase mid-infrared spectroscopy. Cold trapping of this molecule followed by slow warming forms the stable ring dimer, bis(trifluoromethyl)furoxan, also investigated by gas-phase infrared spectroscopy. The spectroscopy provides an investigation into the vibrational character of the two molecules, the assignments supported by calculations of the harmonic vibrational frequencies using in the case of CF3CNO both ab initio (CCSD(T)) and density functional theory (B3LYP) and B3LYP for the ring dimer. The ground-state structures of both molecules were investigated at the B3LYP level of theory, with CF3CNO further investigated using coupled-cluster. The CCSD(T) method suggests a slightly bent (C(s)) structure for CF3CNO, while the B3LYP method (with basis sets ranging from 6-311G(d) to cc-pVTZ) suggests a close-to-linear or linear CCNO chain. The CCN bending potential in CF3CNO was explored at the CCSD(T)(fc)/cc-pVTZ level, with the results suggesting that CF3CNO exhibits strong quasi-symmetric top behavior with a barrier to linearity of 174 cm(-1). Since both isomerization and dimerization are feasible loss processes for this unstable molecule, the relative stability of CF3CNO with respect to the known cyanate (CF3OCN), isocyanate (CF3NCO), and fulminate (CF3ONC) isomers and the mechanism of the dimerization process to the ring furoxan and other isomers were studied with density functional theory.  相似文献   

18.
Six Cu(I) complexes with cis,cis-1,3,5-triaminocyclohexane derivatives (R3CY, R = Et, iBu, and Bn), [Cu(MeCN)(Et3CY)]SbF6 (1), [Cu(MeCN)(iBu3CY)]SbF6 (2), [Cu(MeCN)(Bn3CY)]SbF6 (3), [Cu(CO)(Et3CY)]SbF6 (4), [Cu(CO)(iBu3CY)]SbF6 (5), and [Cu(CO)(Bn3CY)]SbF6 (6), were prepared to probe the ability of copper complexes to effectively catalyze oxygenation reactions. The complexes were characterized by elemental analysis, electrochemical and X-ray structure analyses, electronic absorption spectroscopy, IR spectroscopy, 1H NMR spectroscopy, and ESI mass spectrometry. The crystal structures of 1-3 and 6 and the CO stretching vibrations (nuCO) of 4-6 demonstrate that the ability of R3CY to donate electron density to the Cu(I) atom is stronger than that of the previously reported ligands, 1,4,7-triazacyclononane (R3TACN) and 1,4,7-triazacyclodecane (R3TACD). Reactions of complexes 1-3 with dioxygen in THF or CH2Cl2 at -105 to -80 degrees C yield bis(mu-oxo)dicopper(III) complexes 7-9 as intermediates as confirmed by electronic absorption spectroscopy and resonance Raman spectroscopy. The Cu-O stretching vibrations, nu(Cu-O) for 7 (16O2: 553, 581 cm-1and 18O2: 547 cm-1) and 8 (16O2: 571 cm-1 and 18O2: 544 cm-1), are observed in a lower energy region than previously reported for bis(micro-oxo) complexes. The decomposition rates of complexes 7-9 in THF at -90 degrees C are 2.78 x 10-4 for 7, 8.04 x 10-4 for 8, and 3.80 x 10-4 s-1 for 9. The decomposition rates of 7 and 8 in CH2Cl2 were 5.62 x 10-4 and 1.62 x 10-3 s-1, respectively, and the thermal stabilities of 7-9 in CH2Cl2 are lower than the values measured for the complexes in THF. The decomposition reactions obeyed first-order kinetics, and the H/D isotope experiments for 8 and 9 indicate that the N-dealkylation reaction is the rate-determining step in the decomposition processes. On the other hand, the decomposition reaction of 7 in THF results in the oxidation of THF (acting as an exogenous substrate) to give 2-hydroxy tetrahydrofuran and gamma-butyrolactone as oxidation products. Detailed investigation of the N-dealkylation reaction for 8 by kinetic experiments using N-H/D at -90 degrees C showed a kinetic isotope effect of 1.25, indicating that a weak electrostatic interaction between the N-H hydrogen and mu-oxo oxygen contributes to the major effect on the rate-determining step of N-dealkylation. X-ray crystal structures of the bis(micro-hydroxo)dicopper(II) complexes, [Cu2(OH)2(Et3CY)2](CF3SO3)2 (10), [Cu2(OH)2(iBu3CY)2](CF3SO3)2 (11), and [Cu2(OH)2(Bn3CY)2](ClO4)2 (12), which have independently been prepared as the final products of bis(micro-oxo)dicopper(III) intermediates, suggest that an effective interaction between N-H and mu-oxo in the Cu(III)2(micro-O)2 core may enhance the oxidation ability of the metal-oxo species.  相似文献   

19.
An ab initio study of the stability, spectroscopic properties, and isomeric equilibrium of the hydrogen-bonded HCN...H2O and H2O...HCN isomers is presented. Density functional theory and perturbative second-order MP2 and coupled-cluster CCSD(T) calculations were carried out and binding energies obtained with correlation-consistent basis sets including extrapolation to the infinity basis set level. At the best theoretical level, CCSD(T), the H2O...HCN complex is more stable than the HCN...H2O complex by ca. 6.3 kJ mol(-1). Rotational and vibrational spectra, including anharmonic corrections, are calculated. These calculated spectroscopic data are used to obtain thermochemical contributions to the thermodynamic functions and hence the Gibbs free energy. The relative free energies are used to estimate the equilibrium constant for isomerism. We find that under typical conditions of supersonic expansion experiments (T < 150 K) H2O...HCN is essentially the only isomer present. Furthermore, our calculations indicate that the hydrogen-bonded cluster becomes favorable over the separated moieties at temperatures below 200 K.  相似文献   

20.
Important structural isomers of NH(4) (+)(H(2)O)(n=4,6) have been studied by using density functional theory, Moller-Plesset second order perturbation theory, and coupled-cluster theory with single, double, and perturbative triple excitations [CCSD(T)]. The zero-point energy (ZPE) correction to the complete basis set limit of the CCSD(T) binding energies and free energies is necessary to identify the low energy structures for NH(4) (+)(H(2)O)(n=4,6) because otherwise wrong structures could be assigned for the most probable structures. For NH(4) (+)(H(2)O)(6), the cage-type structure, which is more stable than the previously reported open structure before the ZPE correction, turns out to be less stable after the ZPE correction. In first principles Car-Parrinello molecular dynamics simulations around 100 K, the combined power spectrum of three lowest energy isomers of NH(4) (+)(H(2)O)(4) and two lowest energy isomers of NH(4) (+)(H(2)O)(6) explains each experimental IR spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号