首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The ultraviolet-initiated polymerization of octadecyl methacrylate (ODMA, octadecyl 2-methyl-2-propenoate) as a monomolecular layer at the gas-water interface was studied. The polymerization was carried out at 27°C at the nitrogen-water interface; air inhibits the polymerization. At 27°C the ODMA monolayer exhibits three different states which were characterized by surface pressure-area diagrams and by surface potential measurements. The ODMA monolayer was polymerized under constant surface pressure in the range between 0 and 10 dyne/cm. The polymerization was followed by recording the contraction of the film. The conversion was determined by comparison of the area per monomer unit during polymerization with the area of mixed monolayers formed from ODMA and poly-ODMA as well as by infrared spectroscopy. The polymerization in the condensed state of the monolayer (at high surface pressure) is considerably faster than in the expanded state (at low surface pressure). As the polymer has a condensing effect on the monomer in the mixed monolayer, autocatalysis is suggested at low surface pressures. The resulting polymer was studied by x-ray diffraction. The structure of the freshly collapsed film is determined by the conformation of the polymer at the interface; the data after crystallizing the same sample from the melt point to higher tacticity of the poly-ODMA prepared in monolayers than that of poly-ODMA prepared by normal radical polymerization in solution.  相似文献   

2.
The hydrolysis of 1-monoolein (MO) monomolecular films by Humicola lanuginosa lipase (HLL) was followed by measuring the simultaneous decrease with time in the film area and the surface potential using a ‘zero order trough’ at constant surface pressure (Verger and de Haas, Chem. Phys. Lipids 10 (1973) 127). The decrease with time in the film area reflects both the reduction in the area per molecule as well as the solubilization of the substrate and the product molecules during the transformation of the substrate MO into product of oleic acid (OA). The surface potential changes were interpreted as the results of the accumulation at the interface of negatively charged OA. The surface concentration of OA transiently present at the interface was determined by the surface pressure and the surface potential measurements on the basis of a developed kinetic model. In the proposed model we have taken into account the product and substrate solubilization rates in the presence of β-cyclodextrin (β-CD) as well as the flux supplied progressively by the moving barrier from the reservoir to the reaction compartment in order to keep the constant surface pressure. Values of the global kinetic constant Qm were obtained. The selective lipolytic product acceptor, β-CD, accelerated considerably the hydrolytic process.  相似文献   

3.
The intramolecular H/D kinetic isotope effect in the ene reaction of singlet oxygen with tetramethylethylene is studied using quasiclassical direct dynamics calculations on a B3LYP/6-31G* potential energy surface. Starting from the area of the energy surface around a valley-ridge inflection point, random trajectories lead to predominantly H abstraction over D abstraction, despite the symmetry of the surface and the absence of a barrier to either reaction. This demonstrates a new form of kinetic isotope effect, unrelated to the usual effect of zero-point energies on barriers. Dynamics calculations on the reaction of cis-2-pentene predict the experimentally observed mixture of regioisomeric products, while the minimum-energy path leads to only one product. For energy surfaces containing two adjacent saddle points, dynamics effects are important for understanding both product and isotopic selectivity, and this should be considered in the interpretation of experimental results.  相似文献   

4.
The mechanism of the hydrolysis by cutinase and the progressive fragmentation of lactic chains in diblock copolymers of PLA with various sizes attached to PEG were studied in a 2D monolayers model system. The hydrolysis kinetics was followed by measuring simultaneously the decrease of the surface area and evolution of the surface potential with time at barostatic conditions. The decrease of the surface area is due to the solubilization of the copolymers as well as of their hydrolytic products: detached PEG blocks and small soluble PLA fragments. The evolution of the surface potential detects the transient interfacial accumulation of charged insoluble PLA fragments. A kinetic model describing the enzymatic hydrolysis was developed and the values for the global hydrolytic kinetic constant were obtained without any fitting parameter. It was found that the global kinetic constant no practically depend on the length of the lactic and the presence of polyethylene–glycol chains.  相似文献   

5.
测量了10,12-二炔廿五碳酸单体及其聚合物的π-A曲线,Langmuir膜在10mN/m膜压10,12-二炔廿五碳酸下的紫外光聚合的分子占据面积曲线,可见光对Langmuir膜聚合的加速行为以及该聚合物的紫外可见光谱。并从聚合机理和反应中间体的电子态等角度对可见光在链增长中的作用加以讨论。  相似文献   

6.
The hydrolysis of 1,2-diolein (DO) monomolecular films by Humicola lanuginosa lipase (HLL) was studied by simultaneous measuring the decrease in the film area and the changes in the surface potential in the “zero-order trough” at constant surface pressure and in the presence of β-cyclodextrin (β-CD). The decrease with time in the film area reflects both the reduction in the area per molecule due to the transformation of substrate DO molecules into the products molecules of monoolein (MO) and oleic acid (OA) and the desorption of the soluble inclusion complexes β-CD–MO and β-CD–OA. The surface potential data were interpreted as an accumulation at the interface of negatively charged products of OA and insoluble β-CD–DO complexes. In the proposed kinetic model, the product solubilization rates in the presence of β-CD and the flux supplied progressively by the moving barrier from the reservoir to the reaction compartment in order to keep the constant surface pressure were taken into account. The surface concentrations of MO and OA transiently present at the interface were determined. The values of the global kinetic constant Qm′ of hydrolysis of DO to MO were obtained. Comparison with the values of the global kinetic constant of hydrolysis of monoglyceride MO to OA shows that the rates of hydrolysis of diglyceride and monoglyceride by HLL are of the same order of magnitude.  相似文献   

7.
The mechanism of the enzymatic action of Savinase on an insulin substrate organized in a monolayer at the air-water interface was studied. We followed two steps experimental approach classical surface pressure and surface potential measurements in combination with atomic force microscopy imaging. Utilizing the barostat surface balance, the hydrolysis kinetic was followed by measuring simultaneously the decrease in the surface area and the change of the surface potential versus time. The decrease in the surface area is a result of the random scission of the peptide bonds of polypeptide chain, progressively appearance of amino acid residues, and their solubilization in the aqueous subphase. The interpretation of the surface potential data was based on the contribution of the dipole moments of the intact and broken peptide groups which remain at the interface during the proteolysis. An appropriate kinetic model for the Savinase action was applied, and the global kinetic constant was obtained. The application of the AFM revealed the state of the insulin monolayers before and after the Savinase action. The comparison of the topography of the films and the roughness analysis showed that insulin Langmuir-Blodgett (LB) films transferred before the enzyme action were flat, while at the end of hydrolysis, roughness of films has increased and the appearance of 3D structures was observed.  相似文献   

8.
We formed monolayers and black lipid membranes (BLMs) of photopolymerizable lipids mixed with the channel-forming protein gramicidin A to evaluate their miscibility and the potential for improved stability of the BLM scaffold through polymerization. Analyses of surface pressure vs area isotherms indicated that gramicidin A dispersed with three different synthetic, polymerizable, diacetylene-containing phospholipids, 1,2-di-10,12-tricosadiynoyl-sn-glycero-3-phosphocholine (DTPC), 1,2-di-10,12-tricosadiynoyl-sn-glycero-3-phosphoethanolamine (DTPE), and 1-palmitoyl-2,10,12-tricosadiynoyl-sn-glycero-3-phosphoethanolamine (PTPE) to form mixed monolayers at the air-water interface on a Langmuir-Blodgett (LB) trough. Conductance measurements across a diacetylenic lipid-containing BLM confirmed dispersion of the gramicidin channel with the lipid layer and demonstrated gramicidin ion-channel activity before and after UV exposure. Polymerization kinetics of the diacetylenic films were monitored by film pressure changes at constant LB trough area and by UV-vis absorption spectroscopy of polymerized monolayers deposited onto quartz. An initial increase in film pressure of both the pure diacetylene lipid monolayers and mixed films upon exposure to UV light indicated a change in the film structure. Over the time scale of the pressure increase, an absorbance peak indicative of polymerization evolved, suggesting that the structural change in the lipid monolayer was due to polymerization. Film pressure and absorbance kinetics also revealed degradation of the polymerized chains at long exposure times, indicating an optimum time of UV irradiation for maximized polymerization in the lipid layer. Accordingly, exposure of polymerizable lipid-containing black lipid membranes to short increments of UV light led to an increase in the bilayer lifetime.  相似文献   

9.
The action of the hydrolytic enzymes humicola lanuginosa lipase (HLL) and pancreatic phospholipase A2 (PLA2) on monolayers formed from lipid nanocapsules (LNC) and model monolayers containing their components, Labrafac, Solutol and Lipoid, is studied by simultaneous measuring the changes in the film area and the surface potential in the "zero order" trough at constant surface pressure (pi). The kinetic models describing the hydrolysis by HLL of the Labrafac, Solutol and their mixtures have been proposed. By using the developed theoretical approach together with the experimental results the surface concentrations of the substrates, hydrolysis products and values of the global kinetic constants were obtained. The comparison between the global kinetic constants in the case of HLL hydrolysis of pure Labrafac, Solutol monolayers and those of the model mixed Labrafac/Solutol monolayers, shows that the rates of hydrolysis are of the same order of magnitude, i.e. an additively of the HLL enzyme action is observed. The composition of the mixed Labrafac/Solutol monolayer, formed after the interfacial LNC destabilization, was estimated.  相似文献   

10.
Water vapor adsorption for various activated carbons with narrow and wide micropore volume distributions and mesopore surface areas between 40 and 300 m2/g have been investigated. For all the isotherms the point of inflection was determined, which can be taken as the point characterizing the formation of a water adsorption layer on the pore wall surface of carbon adsorbents. To do this the adsorption and desorption branches of the isotherms were approximated according to Weibull's distribution. A good correlation was obtained between values for the water monolayer capacity, calculated from the porous structure parameters of the carbons, and the adsorption values corresponding to the isotherm inflection pointsa inf. For the group of carbons studied the values of relative pressure at the inflection point of the isotherms fell within the range 0.5–0.72.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 1, pp. 31–34, January, 1991.  相似文献   

11.

The colloidal chemical properties of triple block copolymers of polypropylene oxide and polyethylene oxide (pluronics of various structures) were studied in comparison. All of them are shown to be surfactants but differ in interfacial tension, surface activity, surface area occupied in the adsorption layer, and adsorption layer thickness. The kinetic regularities of polymerization of styrene and methyl methacrylate were studied. The particle diameters and their size distribution were determined. Distinctions in the kinetic regularities of polymerization are shown: the shape of the conversion—time curves (for the duration of the initial and stationary stages of polymerization) and the dependences of the diameter on the surfactant concentration and monomer to water volume ratio. In the presence of the water-insoluble pluronics, the mechanism of formation of polymer—monomer particles and interfacial layer on the surface differs from that when using water-soluble surfactants, which makes it possible to distinguish these processes into an independent type of heterophase polymerization.

  相似文献   

12.
The plasma polymerization and deposition of ethane in a parallel-plate electrode system was predicted using gas-phase transport equations and published gas-phase kinetic rate constants, with the assumption that the deposition rate was limited by the production of monomer free radicals and their diffusion to the deposition surface. The kinetic rate constant for radical initiation by electron collision with ethane was adjusted to bring the modelpredictionsfor mass deposition into line with experimental measurements reported in the literature for 12 combinations of power, gas fowrate, and pressure. Furthermore, the shapes of the predicted deposition profiles were made to closely match the experimental profiles by introducing an adjustable parameter to account for plasma boundary effects and two coefficients to account for nonradical polymerization (constant for all conditions). The best-fit electron-collision initiation constant was compared with theoretical predictions for oxygen and hydrogen in a manner explainable by bond strengths and vibrational degrees of freedom.  相似文献   

13.
The hydrolysis reaction of , and , -dipalmitoylphosphatidylcholine (DPPC) catalized by bee venom phospholipase A2 was studied in spreading monolayer at the water/air interface. DPPC and the hydrolysis products, palmitic acid and -lysophosphatidylcholine, palmitoyl were characterized at the interface by means of surface pressure, surface potential and ellipsometric measurements. Furthermore, mixed monolayers of reagents and products were investigated to ascertain their miscibility. The results show that the hydrolysis reaction can be followed by the decrease of surface pressure with time on subphases containing β-cyclodextrin, a well-known complexing agent of many amphiphilic compounds. The order of the reaction, the kinetic constant and other kinetic parameters are deduced.  相似文献   

14.
用直径7 μm的碳纤维组合成超微圆盘电极,以聚苯胺修饰电级.以阶梯扫描法、循环伏安法、双阶跃计时电量法和交流阻抗法等,研究了Cd2+在该电极上的表面络合吸附特性和电极过程.在循环伏安图上出现两个还原峰,实验和理论都证明,由于电极表面的聚苯胺对Cd2+的特性吸附,形成电活性的表面吸附态络合物.因此,这种表面络合物首先被还原,形成峰电位-0.90 V处的表面络合吸附波,还原峰电位比Cd2+直接还原电位(-0.98 V)正移,循环反扫时,氧化波无峰形.根据实验数据推测了电极过程的反应机理,证实该还原波具有扩散和表面反应同时控制的表面络合吸附波的特性.理论计算与实验基本一致,并求得了表面吸附态配合物的形成常数、吸附量和表面络合反应的动力学参数.实验还证实,在峰电位-1.06 V 处的还原波,是Cd2+的表面吸附还原态诱导而产生的催化氢波.  相似文献   

15.
The aim of the present study was to propose a simplified experimental-theoretical method for estimating the kinetic and thermodynamic parameters for the solid-liquid separation of pollutants by using kinetic studies with batch reactors, i.e., the removed quantity of dissolved ion as a function of time at different initial concentration. This method was applied to the removal of uranyl ion (UO(2+)(2)) from aqueous solutions onto synthetic manganese oxide (birnessite). The pseudo-second-order kinetics and one-site saturation models were proposed to fit the experimental and calculated data, the fitting parameters being estimated by nonlinear regression, using the least-squares method. For initial concentration range 0.2-11.8 microM, the results showed that the uranyl removal process in dispersed batch reactors can be efficiently modeled by the proposed models. Then, several kinetic and thermodynamic parameters were calculated, such as maximal removed quantity of uranyl, q(r,max), half-removal time, t(1/2), initial rate of uranyl-ion removal, v(0), initial uranyl-removal coefficient, K, maximal rate of uranyl removal, v(0,max), mass transfer coefficient, D(transfer), equilibrium Langmuir constant, K(L), and constant separation factor, K(s). These parameters make it possible to demonstrate that the removal of U onto birnessite is favorable, and that the maximum surface coverage of the uranyl ions represents about 3% of vacant sites in the Mn layer.  相似文献   

16.
The pressure dependence of the prototypical glass-former propylene carbonate has been investigated over a broad range of temperature and pressure that were inaccessible in previous investigations using dielectric spectroscopy. We find that the viscosity measurements validate the scaling relation, eta(T,V)=J(TV gamma), with a scaling parameter gamma close to that found from dielectric relaxation measurements. In the pressure dependence of the viscosity, we observe an inflection point in the log eta versus P response, similar to that found previously for other materials. However, this inflection has never been observed in dielectric relaxation measurements. Using the scaling property above, it is possible to determine the behavior of the dielectric relaxation time in this otherwise inaccessible experimental range and compare it with the viscosity measurements. We find that the behaviors of eta and tau are very similar, and a very good agreement between the function phi P calculated for these two quantities is found. Starting from the validity of the scaling properties, we show that the inflection point in the pressure dependence of the viscosity can be attributed to the convolution of the pressure dependences of the compressibility kappa T and the apparent activation energy at constant volume EV.  相似文献   

17.
The water-soluble lipolytic enzymes act at the interface of insoluble lipid substrates, where the catalytical step is coupled with various interfacial phenomena as enzyme penetration, solubilization of reaction products, loss of mechanical stability of organized assemblies of phospholipids molecule, etc. One biologically relevant example is the enzymatic hydrolysis of DOPC by PLA(2), which results in cleavage of phospholipids molecules into water insoluble lipolytic products, namely oleic acid and lysophospholipid. In general, the enzymatic activity depends on the substrate organization and molecular environment of the catalytic reaction. The lipolysis by phospholipase A(2) of dioleoylphosphatidylcholine substrates organized as monolayer, bilayers vesicles and lipid nanocapsules was studied by measuring the decrease of the surface area at constant surface pressure or increase of the surface pressure at constant area at air-water interface. A kinetic model describing the coupling of the catalytic act with corresponding interfacial phenomena was developed. By using the kinetic model the values for the global hydrolytic kinetic constants were obtained. The obtained value for the monolayer is five orders of magnitude higher than this obtained with small unilamellar vesicles and six orders of magnitude higher then those obtained with lipid nanocapsules. The comparison shows that the enzymatic catalytic act occurring in the lipid environment of the monolayer is more efficacious than at the vesicle and nanocapsules interfaces.  相似文献   

18.
The "carpet"/brush double layer structure in the polyelectrolyte layer in the amphiphilic diblock copolymer monolayer at the air-water interface was quantitatively studied by in situ neutron reflectometry in addition to X-ray reflectivity measurements. As a result of the higher contrast between polyelectrolyte [poly(methacrylic acid)] and solvent (D(2)O) for the neutron, the brush structure could be estimated more accurately as a function of surface pressure, that is, brush density. The thickness of the carpet layer, which is thought to be formed to reduce the interfacial free energy between water and the hydrophobic layer, was almost constant at 10-20 A at any surface pressure studied. Growth was clearly observed in the whole brush length with increasing surface pressure, and it was estimated to be almost 60% of the full-stretch length of the ionic polymer chain. Furthermore, by the comparison of density profiles by neutron and X-ray reflectometry, an anomalous hydration was suggested.  相似文献   

19.
The present study of the cyclooctatetraene potential energy surface shows the presence of a bifurcation (valley ridge inflection point) in the intrinsic reaction coordinate path between the two transition states of D(8h) and D(4h) symmetries. This result is of capital importance for the correct understanding of the bond shifting and ring inversion processes in this compound.  相似文献   

20.
The hydrolysis kinetics of spread insoluble monolayers of poly(α-hydroxy acid)s with various molecular weights and lactic acid–glycolic acid molar ratios was followed by measuring simultaneously the decrease in the surface area at constant surface pressure and the evolution of the surface potential. The interfacial hydrolysis at alkaline pH leads to the progressive fragmentation of the polymer molecules and the appearance of charged insoluble products (detected by measuring the surface potential) and small soluble fragments (detected by measuring the decrease in the surface area). The data obtained by both approaches were interpreted in the framework of the random scission model. The rates of hydrolysis are larger for polymers with smaller initial polymerization numbers and increase with the decrease in the molar ratio of lactic acid units. Received: 7 December 1998 Accepted in revised form: 8 March 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号